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Chapter 1 

I NTRODUCT I ON 

A f t e r  being in a relatively dormant state for many years, 

o n l y  recently i s  artificial intelligence ( A I )  - that branch of 

computer science that attempts to have machines emulate 

intelligent behavior - accomplishing practical results. M o s t  of 

these results can be attributed to the design and use of 

Knowledge-Based Systems, KBSs ( o r  expert systems) - problem 

solving computer programs that can reach a level of performance 

comparable to that of a h u m a n  expert in some specialized p r o b l e m  

d o m a i n  [Nau, 8 3 1 .  These systems c a n  act as a consultant for 

various requirements like medical diagnosis, m i l i t a r y  threat 

analysis, project risk assessment, etc. These systems possess 

knowledge to enable t h e m  to m a k e  intelligent decisions. T h e y  

are, h o w e v e r ,  not m e a n t  to replace the human specialists in any 

particular domain. 

This r e p o r t  surveys recent w o r k  in interactive KBSs. 

explaining KBS concepts, issues, and KBS technology. 

Basic concepts o f  K B S s ,  including the characteristics and 

types of KBSs, and differences between knowledge and data, 

knowledge a n d  skill, and difference between a n  expert and a 

n o v i c e  a re presented in C h a p t e r  2. A l s o  in C h a p t e r  2, a brief 

d e s c r i p t i o n  o f  a hypothetical KBS, and various components in a 

KBS a r e  presented. 

1 
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In Chapter 3, various techniques used to construct KBSs are 

discussed in- detail. 

In S e c t i o n  3.1, a n  introductory discussion is presented for 

origins of KBS techniques, various choices and restrictions, 

knowledge representation problems, knowledge representation 

forms, knowledge representation units, and credibility factors. 

A l s o  in S e c t i o n  3.1, the differences between procedural and 

declarative representations are discussed. 

In S e c t i o n  3.2, various m e t h o d s  for representing knowledge 

in KBSs a r e  discussed. Specifically, six representation 

techniques - finite-state m a c h i n e s ,  programs, predicate calculus', 
. 

production rules, semantic networks, and frames - are discussed 

in detail. 

In S e c t i o n  3.3, various issues and techniques related to 

the inference engine o f  a KBS are discussed. A l s o  in Section 

3.3, two performance m e t r i c s  that are useful in evaluating the 

performance o f  a n  inference engine are described. 

In S e c t i o n  3.4, after providing brief introduction for 

w o r k s p a c e  representation in KBSS, two techniques 

(HEARSAY-Blackboard and AND/OR Gr a p h )  are discussed in some 

detail. - 

In S e c t i o n  3.5, various functions and types of interfaces 

a r e  discussed. A l s o  in 3.5, the knowledge acquisition process 

is described. Specifically the phases involved and problems 

associated with the knowledge acquisition process are discussed. 

In C h a p t e r  4, various tools and languages to build KBSs are 
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discussed. 

In Section 4.1 an introduction to various tools and 

languages i s  presented. In Section 4.2, three case studies 

(EMYCIN, HEARSAY-111, and AGE) for KBS building tools are 

described. 

In Chapter 5, various considerations that should be taken 

into account before (and during) building a KBS are presented. 

Conclusions are presented in Chapter 6 and, in Chapter 7, 

many problems that exist in current KBSs and, hence, future areas 

of research are identified. 

T h r e e  appendicies are provided i n  this report. In Appendix 

A, a case study of a KBS (MYCIN) i s  described in detail. A list 

of existing KBSs and brief description of those systems are 

provided in Appendix B. In Appendix C, a brief introduction is 

provided for the Japanese Fifth Generation Computer Project. 

And, finally, extensive s e t  o f  references are provided at 

the end of this report. 



Chapter 2 

-EDGE-BASED SYSTEMS (KBSS) 

I t  i s  necessary to distinguish, at the outset, between 

knowledge-based systems and other computer-based systems that 

contain or incorporate knowledge. Almost all computer programs 

and systems contain knowledge of at least two kinds: knowledge 

about things and knowledge about w h a t  to do w i t h  things - that 

is, h o w  to m a n i p u l a t e  or transform them. A KBS can be defined in 

the following way: "A knowledge-based system i s  one in w h i c h  

knowledge is collected in one or m o r e  -nts (called 

knowledge sources) and i s  of the kind that facilitates problem 

solving (reasoning) in a w e .  y e l l  -defined p r o b l e m  domain and 

w h o s e  p e r f o r m a n c e  i s  comparable to that of a human expert in some 

specialized p r o b l e m  domain". (This definition i s  based on the 

definitions presented in [Barnett & Bernstein, 771 and [Nau, 

831). 

F r o m  this definition, however, i t  is not readily apparent 

what distinguishes such a s y s t e m  f r o m  a n  ordinary application 

program. Many application programs make use of specialized 

problem-solving knowledge and m a n y  of t h e m  reach h i g h  levels o f  

performance [Nau, 8 3 1 .  The discussion in the next section should 

help m a k e  that distinction. 

- 

4 
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2.1.1 m r a c t v i s t  its i & K E s x  

Some important characteristics of KBSs (and differences with 

other computer-based systems) are discussed in the following 

sub-sections. 

M o s t  computer programs organize knowledge on two levels: 

data a n d  program. But m o s t  knowledge-based systems organize 

knowledge o n  three levels: data, knowledge, and control. 

At the d a t a  level i s  information about the current problepl 

and the current state of affairs in the attempt to solve the 

problem. 

At the knowledge base level i s  general knowledge about the 

p r o b l e m  d o m a i n  the system i s  designed and built f o r .  

At the control level are the methods (inference engine) o f  

applying general knowledge to solve the problem. 

2 . 1 . 1 . 2  P e r f o r m n c e  

KBSs handle real-world, complex problems w h i c h  require a n  

expert's interpretation (or expertise). The experts produce 

consistently- high-quality results in m i n i m a l  time (i.e., they 

s h o w  "high performance"). H i g h  performance requires that the 

K B S s  h a v e  not only general facts and principles but the 

specialized ones that separate human experts f r o m  novices 

[Buchanan, 8 2 1 .  Accurate and h i g h  quality results are shown in 

- 



m a n y  successfyl KBSs in restricted classes of problems. 

However; currently there are n o  (known) formal metrics to 

evaluate the performance of KBSs (see Chapter 7 ) .  

. hL- 
. .  2.1.1.3 UtllltV 

Designers o f  KBSs are motivated to build these systems 

because of the demonstrated need in m a n y  application areas, in 

a d d i t i o n  to constructing programs that serve as vehicles for AI 

research. F o r  example, the motivation for developing the MYCIN 

s y s t e m  - a s y s t e m  which provides consultive advice on diagnosis 

o f  a n d  therapy f o r  infectious diseases, in particular, bacteriai 
. 

infection in the blood, bacteremia - w a s  the n e e d  for more (or 

m o r e  accessible) consultants to physicians se 1 ec t ing 

a n t i m i c robial drugs (see the case study o f  MYCIN in Appendix A). 

On the o t h e r  hand, solving the T o w e r  of H a n o i  puzzle, per 

se, i s  not a critical bottleneck in any scientific o r  engineering 

enterprise. H o w e v e r ,  in some cases, a task is chosen just 

because of i t s  inherent importance. M o r e  often than not, a 

problem’s significance for AI research is a l s o  a factor n o w  

because KBSs a r e  still constructed by researchers for research 

purposes [Buchanan, 8 2 1 .  Usefulness also implies competence, 

consistently h i g h  performance, and ease o f  use. 

O n e  of the m o s t  important characteristics of a KBS is the 

a b i l i t y  to conduct a n  interactive dialog with the user i.e., the 
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user does n o t - v i e w  KBS as a "black box". This me a n s  the system 

should be --able to provide coherent explanations of i t s  line of 

reasoning and answers to queries about i t s  knowledge and i t s  

results, rather than simply printing a collection of orders to 

the user. I t  is not necessary that KBSs are psychological m o d e l s  

of the reasoning of the experts. H o w e v e r ,  they must be 

understandable to persons familiar w i t h  the p r o b l e m  [Buchanan, 

821. 

2.1.1.5 H e u r i s t i c s  

- 
H e u r i s t i c s  (or hunches o r  rules of thumb) are a n  essential 

k e y  to intelligent p r o b l e m  solving because computation all^ 

feasible, m a t h e m a t i c a l l y  precise m e t h o d s  are known for only a 

relatively f e w  classes of problems. A large part of w h a t  a KBS 

ne e d s  to k n o w  i s  the body of heuristics that specialists use in 

solving h a r d  problems, i.e., the need to reason w i t h  judgemental 

knowledge a s  well as  w i t h  formal knowledge of established (or 

textbook) theories [Buchanan, 8 2 1 .  W i t h  the above heuristic 

knowledge, the s y s t e m  provides expert-level analyses of difficult 

situations. 

. . .  2 . 1 . 1 . 6  P l e x l b l l l  tv 

A n o t h e r  characteristic of a KBS i s  that i t  integrates n e w  

knowledge incrementally into i t s  existing store of knowledge, 

i.e., a KBS provides incremental development of knowledge over a n  

extended time by letting the developers refine old rules and add 

n e w  ones. 
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In KBSs, there is a clear separation of the general 

knowledge o f  a problem d o m a i n  and the reasoning m e c h a n i s m w h i c h  

uses this knowledge (as w a s  mentioned in Section 2.1.1.1, 

"Organization o f  Knowledge"). W i t h  this separation, the program 

c a n  be changed by simple modification o f  the knowledge base, 

i.e.. the same general s y s t e m  can be used for a variety of 

applications, essentially by "unplugging" one set of rules and 

"plugging" in another. 

- 
2.1.1.8 U n c e r t a i n t y  

A n o t h e r  very important and distinguishing characteristic of 

a KBS i s  its ability t o  r e a s o n  under uncertain o r  incomplete 

information. Let us take the example of MYCIN. I t  takes f r o m  12 

to 24 hours to determine w h e t h e r  there is a n  o r g a n i s m  and m a k e  a 

preliminary identification of its general characteristics. 

A n o t h e r  24 t o  48 hours a r e  required to o b t a i n  specific 

identification and possibly even m o r e  time to determine which 

specific antimicrobial drug is most effective in either 

counteracting the o r g a n i s m  or arresting its growth. In m a n y  

cases, the in?ection is serious enough that treatment m u s t  be 

begun before all of the analyses c a n  be completed. Therefore, 

a n y  recomnended therapy m u s t  be based o n  incomplete information. 

In building KBSs with the above characteristics, researchers 

have found that amassing a large amount o f  data rather than 
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sophisticated-reasoning techniques i s  responsible for m o s t  of the 

power of thF- system. S u c h  KBSs, previously limited to academic 

research projects, are beginning to enter the software market 

place [Gevarter, 831. Some of the application areas w h e r e  KBSs 

are used are: 

( 1 )  M e d i c a l  diagnosis. 

(2) M i n e r a l  exploration. 

(3) Oil-well log interpretation 

( 4 )  Chemical and biological synthesis. 

( 5 )  M i l i t a r y  threat assessment. 

( 6 )  Planning and scheduling. 

( 7 )  Signal interpretation. 

( 8 )  Air-traffic control. 

( 9 )  VLSI design. 

(10) Equipment fault diagnosis. 

( 1 1 )  S p e e c h  understanding. 

( 1 2 )  S p a c e  defense. 

(13) KB access and management. 

. 

T a b l e  2-1 lists a f e w  of the existing systems developed for 

selected prob-lem areas. A m o r e  extensive list i s  provided in 

Appendix B. 

2.1.2 T v F e s  nf KBSs 

M o s t  of the KBS applications fall into a f e w  distinct types 

and a r e  sumnarized in Table 2-2. 
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T a b l e  2-1 SCl'vlE EXISTING EXPERT S Y S T M  [Nau, 831 

AQ1 Diagnosis o f  Plant Diseases 

C A S N E T  Medical Consulting 

DENDRAL Hypothesizing Molecular Structure 
f r o m  M a s s  Spectrograms 

DI PMETER ADVI SOR Oil Exploration . 
EL Analyzing E l e c t r i c a l  Circuits 

INTERN1 ST Medical Consulting 

KMs Medical Consulting 

MACSYMA Mathematical Formula Manipulation 

m X  Medical Consulting 

mmEN Planning DNA Experiments 

MYCIN 

PROSPECIOR 

Medical Consulting 

Mineral Exploration 

PUFF Medical Consulting 

R1 Computer Configuration 
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Table 2 - 2  GENERIC CATEGORIES OF K"LEDGE ENGINEERING 

AP PL I CAT IONS 

[Hayes-Roth, et al, 8 3 1  

INTERPRETATION Inferring Situation Descriptions 
from Sensor Data 

PREDICT I ON 

DIAGNOS IS 

DESIGN 

Inferring Likely Consequences of - 
Given Situations 

Inferring System Malfunctions 
from Observables 

Configuring O b j e c t s  Under 
Constraints 

PLANNING Designing Actions 

PvDNITQRING 

DEBUGGING 

REPAIR 

INSTRUCJTION 
- 

CONTROL 

Comparing Observations to Plan 
Vulnerabilities 

Prescribing Remedies for 
Malfunctions 

Executing a P l a n  to Administer a 
Prescribed Remedy 

Diagnosing, Debugging, and 
Repairing Student Behavior 

Interpreting, Predicting, 
Repairing and Monitoring System 
Be havi or s 
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2.1.2.1 I p t e r a r e t a t  i o n  Slvstems 

Interpretation systems analyze the data or observables and 

infer their m e a n i n g .  This category c a n  be further divided into 

two: data analysis systems and situation analysis systems. 

T h i s  category includes surveillance, speech understanding, 

image analysis, chemical structure elucidation, signal 

interpretation, and oil-well log interpretation. A k e y  

requirement f o r  these systems is to find consistent and correct 

interpretations of the data. I t  i s  o f t e n  important that analysis 

systems be rigorously complete, i.e., they consider the possible 

interpretations systematically and discard candidates only w h e n  

there is enough evidence to rule t h e m  out. 

A n  example of this type i s  DENDRAL w h i c h  interprets m a s s  

spectrometer d a t a  [Feigenbaum, et al, 7 1 1 .  T h e  data are 

m e a s u r e m e n t s  of the m a s s  of m o l e c u l a r  fragments and 

interpretation i s  a determination of one or m o r e  chemical 

structures. 

This category includes analysis of electrical circuits, 

digital circuits, mechanics problems, earthquake damage 

assessment f o r  structures, and m i l i t a r y  threat analysis. A k e y  

requirement of these systems, in addition to the requirements of 
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the data analysis systems, i s  plausible reasoning and i t s  ability 

to recover f r o m  - tentative assumptions. 

An example of this type i s  s y s t e m  EL [Sussman, 771, w h i c h  

uses forward reasoning with electrical laws to compute 

electrical parameters (voltage and current) at one node of a 

circuit f r o m  parameters at other nodes. 

2.1.2.2 P r e d i c t  i o n  Svstems 

P r e d i c t i o n  systems infer likely consequences (i.e., 

forecast the course of the future) f r o m  given situations (past 

and present). This category includes w e a t h e r  forecasting; 

demographic predictions. traffic predictions, crop estimates, 

and m i l i t a r y  forecasting. A k e y  requirement for these systems is 

the a b i l i t y  to refer to things that change over time and to 

events that are ordered in time. T h e y  m u s t  have adequate m o d e l s  

of the w a y s  that various actions change the state o f  the modeled 

environment over time. 

. 

C u r r e n t l y  there i s  no k n o w n  KBS w h i c h  f a l l s  into this 

category. 

2.1.2.3 -nos is sJLsum& 
- 

D i a g n o s i s  systems infer s y s t e m  malfunctions (or disease 

state in a living system) f r o m  observables. T h i s  category 

includes m e d i c a l ,  electronic, mechanical and software diagnosis, 

and diagnosis of nuclear reactor accidents. Key requirements 

include those of interpretation. A diagnostician m u s t  understand 
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the s y s t e m  organization (i.e., its anatomy) a n d  the relationships 

and interactions between subsystems. 

An example of this category i s  INTERNIST-1, a n  experimental _ ,  

computer based diagnostic consultant for general internal 

medicine. T h e  system c a n  deal with five hundred diseases and i t  

i s  a b l e  to diagnose multiple and simultaneous diseases [Pople, 

7 7 1 .  

2.1.2.4 Des- S v s t e m  

D e s i g n  systems develop specifications (or configurations of 

objects) that satisfy particular requirements of the d e s i g n  
I 

problem. T h e y  include circuit layout, building design, and 

chemical synthesis. Requirements for these systems include 

m i n i m i z a t i o n  of a n  objective function that m e a s u r e s  costs and 

other undesirable properties of potential design, and the ability 

to e x p l a i n  and justify the design decisions. 

An example of this type is R 1 ,  a s y s t e m  for configuring 

Digital Equipment C o r p o r a t i o n  VAX computer systems [McDermott. 

801. 

2.1.2.5 - e -  

- 

P l a n n i n g  systems d e s i g n  actions that c a n  be carried out to 

achieve goals. T h e y  include automatic programning, robotics, 

planetary flybys, mission planning, d e s i g n  of m o l e c u l a r  genetics 

experiments, and m i l i t a r y  planning problems. A k e y  requirement 

for these systems is that they construct a p l a n  that achieves 
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goals without consuming excessive resources or violating 

constraints,- I f  goals conflict, they establish priorities. 

Since planning always involves a certain amount of prediction, 

these planning systems also have certain requirements of 

prediction systems. 

An example of this type is M)LGEN, a genetic engineering 

s y s t e m  to assist geneticists in planning laboratory experiments 

concerned with m a n i p u l a t i o n  o f  DNA w i t h  restriction enzymes 

[Martin, et al, 771. 

2.1.2.6 m i t o r i q g  Svs t u  . 

M o n i t o r i n g  systems continuously observe s y s t e m  behavior, 

interpret the signals and set off alarms w h e n  intervention i s  

required. T h e  k e y  requirements for m o n i t o r i n g  systems are 

similar to those o f  diagnostic systems with the additional 

requirement that the recognition of a l a r m  conditions be carried 

out in real time. F o r  credibility, these s y s t e m  should avoid 

false alarms. Many computer-aided monitoring systems exist in 

nuclear power plants, air traffic control, disease, regulatory, 

a n d  fiscal management tasks. 

An exaxpple of this type of system i s  VM (Ventilator 

Monitor), w h i c h  monitors a patient using a m e c h a n i c a l  breathing 

device af.ter surgery [Fagan, 8 0 1 .  
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2.1.2.7 Debupplnn * S v s t e m s  

Debugging systems prescribe remedies for malfunctions, 

i.e., they create specifications or reconmendations for 

correcting a diagnosed problem. T h e  key requirements are similar 

to that of planning, design, and prediction systems. 

C o m p u t e r  aided debugging systems exist for computer 

programming in the f o r m  of an intelligent knowledge base and text 

editors, but none qualify as a n  knowledge-based system. 

2.1.2.8 -air Svstems 
. 

R e p a i r  systems create plans ( o r  reconmendations) and 

execute those plans to correct some diagnosed problem. T h e  

requirements for these systems are similar to those of debugging 

and planning systems. 

Computer-based repair systems exist in automotive, network, 

avionic, and computer maintenance. Construction of KBSs of this 

t y p e  has just begun. 

2.1.2.9 Jn s t r u c t i o n a l  Svstems 

T h e  computer-aided instruction systems (or, simply, 

instruction systems) diagnose and debug student behaviors and 

p l a n  a tutorial interaction intended to convey the remedial 

knowledge to the student. Because these systems incorporate 

diagnosis and debugging subsystems, the requirements for 

instructional systems are similar to those of diagnosis and 
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debugging systems. They include electronic trouble shooting, 

medical diagnosis, teaching, mathematics, and coaching a game. 

An example of this system i s  SOPHIE, w h i c h  teaches 

problem-solving skills in the context of a simulated electronic 

laboratory. SOPHIE allows the student to have a one-to-one 

relationship with a computer-based "expert" w h o  helps him come u p  

w i t h  his own ideas, experiment with those ideas, and w h e n  

necessary, debug them. 

2.1.2.10 h t r o l  S v s t m  

. 
An expert control s y s t e m  adaptively governs the overal.1 

behavior o f  a system w h i c h  include interpreting, predicting, 

repairing, and monitoring s y s t e m  behaviors. T h e  requirements o f  

these systems include those of interpretation, prediction, 

repairing, a n d  monitoring systems. T h i s  category includes air 

traffic control, business management, battle management, and 

m i s s i o n  control. 

KBSs a r e  just entering this field. 

Svstems 2.1.2.11 h o w l e d g _ e  k a u i s i t u  . . .  

T h e s e  systems assist in the construction of large knowledge 

bases and refinement of existing knowledge by helping transfer 

expertise f r o m  the human expert to the knowledge base. T h e  k e y  

requirements o f  these systems include organization o f  knowledge 

into meta-level knowledge w h i c h  helps in the t a s k  of assembling 

and m a i n t a i n i n g  large amounts of knowledge and in providing a 
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natural language interface. This category includes maintaining 

large medica-1 knowledge bases and geological knowledge bases. 

An example of this type is TEIRESIAS [Davis & Lenat, 821, a 

s y s t e m  w h i c h  m a k e s  possible the interactive transfer o f  expertise 

f r o m  a human expert to the knowledge base of a h i g h  performance 

program, in a dialog conducted in a restricted subset of natural 

1 anguage . 

2.1.2.12 E x p e r t  S v s t e m  lCPPstruct i o n  Svstems 

T h i s  type o f  system provides general-purpose programning 

systems t o  build expert systems. T h e  key requirements include 
. 

provision for knowledge representation techniques a n d  intelligent 

editing facilities. This category includes m e d i c a l  consultation 

systems a n d  electronic s y s t e m  diagnosis systems. 

An example of this type is ROSIE [Fain, et a l ,  811, w h i c h  

provides a general-purpose programning system for building expert 

system. T h i s  s y s t e m  also has very sophisticated editing 

facilities w h i c h  check syntax and semantics of the input. 

2.1.2.13 Imape Underst- - S v s t e m s  

T h e s e  -systems attempt to identify and c l a s s i f y  instances of 

m o d e l e d  objects and, at the same time, extract three-dimensional 

information f r o m  a m o n o c u l a r  image concerning the shape, 

structure, a n d  three-dimensional location and orientation of the 

objects. T h e  k e y  requirements f o r  this type of system are 

similar to interpretation, prediction, modeling, a n d  description 
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systems. This category inc lude s aerial photography 

interpretation and views of automated assembly work-stations. 

An example of this type i s  the VISIONS system, w h i c h  has 

been tested w i t h  outdoor scenes [Cohen & Feigenbaum, 821. 

i o n  Svstems 2.1.2.14 ICQI1ceDt - Fornaat 

C u r r e n t l y  only one system of this type exists: AM. AM 

m o d e l s  one aspect of elementary mathematics research: developing 

new concepts under the guidance of a large body of heuristic 

rules [ D a v i s  & Lenat, 821. 
. 

2.1.3 h w l e d z e  & D a t a  

T h e  concept of knowledge i t s e l f  i s  not simple, in the s e n s e  

that i t  can b e  rigorously defined or bounded, nor i t  c an b e  

divorced f r o m  the m e a n s  of acquiring or using i t .  The latter i s  

equally true w h e t h e r  w e  are speaking of human or computer based 

knowledge-based systems. H o w e v e r ,  some s i m p l e  observations c a n  

b e  m a d e  about knowledge and data. 

W i d e r h o l d  [Widerhold. 8 4 1  observes that: 

- 
( 1 )  Knowledge considers general aspects of data. 

( 2 )  Knowledge i s  significantly smaller than data. 

(3) Knowledge does not vary rapidly (compared to data) 

T h e  following simple examples illustrate the difference 

between knowledge and data [Widerhold, 841: 



20 

Mr. Lee's age is 43 years - Data 

M i d d l e y a g e  is 35-50 - Knowledge 

People of middle-age are careful - Knowledge 

Mr.  L e e  h a s  never h a d  a traffic accident - D a t a  

2.1.4 K n o w l e d g k  anb Skill 

Webster's dictionary defines skill a s  "the ability to use 

one's knowledge effectively and readily in execution or  

performance". Skills refer to organized m o d e s  o f  operation and 

generalized techniques for dealing w i t h  problems. T h e  problems 

may be of s u c h  nature that little o r  n o  specialized and technical 

information, thus n o  special knowledge, is required. O t h e r  

problems may require specialized and technical information at a 

r a t h e r  h i g h  level s u c h  that specific knowledge is required in 

dealing with the p r o b l e m  [Barnett & Bernstein, 7 7 1 .  

T h e  m a i n  characteristic of a skilled performance include 

great speed, o r  other efficiencies, reduced error, reduced 

cognitive load (attentional requirements) and increased 

adaptability and robustness [Hayes-Roth, et al, 831. 

T h e  difference between expert and novice - experts solve 

c o m p l e x  problems considerably faster and w i t h  less errors than 

n o v i c e s  - are comnonplace w i t h i n  everyday experience. During the 

past decade, substantial progress has been m a d e  in exploring and 
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explaining the human information processes that underlie expert 

performance % -  

The major components of a n  expert’s skill (expertise) w h i c h  

separates the expert f r o m  the novice are: perceptual knowledge, 

recognition capabilities, and the w a y  in w h i c h  information is 

represented in long-term memory. 

An expert knows a great m a n y  things and c a n  rapidly evoke 

particular items relevant to the problem at hand. Although a 

sizable body of knowledge i s  prerequisite to expert skill, that 

knowledge m u s t  be indexed by a large numbers of patterns that, on 

recognition, guide the expert in a fraction of a second t o  
. 

relevant parts of the knowledge store. 

H u m a n  m e m o r y  consists of a complex organization of nodes 

connected by links called “ l i s t  structures”. H u m a n  long-term 

m e m o r y  can be represented formally by such node-link structures 

and almost all computer simulations of c o g n i t i o n  use list 

structures together with productions that act on these l i s t  

s t r u c t u r e s  as their fundamental m e a n s  for r e p r e s e n t i n g  memory. 

T h e s e  formalisms capture the associative properties of long-term 

m e m o r y .  An excellent discussion o n  expert and n o v i c e  ( o n  which 

the d i s c u s s i D n  above w a s  based) can be found in [Larkin, e t  al, 

801. 

2 . 1 . 6  K B S s a n h E z i s v s t e m s  

KBSs co n t a i n  large amounts of varied knowledge, which  they 
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use during a p r o b l e m  solving activity. Expert systems (ESs) are 

a species o f - K B S s ,  - w h i c h  use large amounts of knowledge and whose 

performance is equivalent to that of a n  expert in a given domain. 

Expert performance means, for example, the level o f  very 

experienced engineering o r  scientific tasks, o r  very experienced 

PrD diagnosing and recomnending therapy. T h e  ES acts as a n  

intelligent assistant to a human expert. 

A s y s t e m  that c a n  understand images, or understand speech, 

may rely on a large knowledge base to achieve its perceptions, 

but i t  d o e s  not require any human expertise. For instance, 

normal h u m a n  beings are born with eyes, ears, and the equipment 

behind t h e m  to process the signals those organs receive, and they 

quickly acquire the knowledge needed to understand the signals. 

But normal humans are not born to knowing, f o r  example, h o w  to 

diagnose a disease: that takes expertise, learned over a long 

period. 

. 

T h i s  report will not rely upon the formal distinction 

between KBSs and ESs. but will rather use the terms a s  though 

they w e r e  synonymous, a n d ,  in fact, in m o s t  o f  the literature 

these terms a r e  used interchangeably. 
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2.2 A w e t i c a l  KBS 

T h e  following is a brief description and example of a 

simple, hypothetical KBS application that illustrates most o f  the 

capabilities o f  a KBS. This example and description is based on 

[Barnett & Bernstein, 771. 

T h e  hypothetical s y s t e m  is a n  automotivt! service consultant 

w h o s e  primary purpose i s  t o  h e l p  ensure the best service at the 

least cost f o r  automobiles brought to a service agency. Based on 

the d i s c u s s i o n  in S e c t i o n  2.1.2, this KBS falls into the category 

o f  repair systems and all repair systems will als o  have diagnosis 
. 

subsystems. 

T h e  p r o b l e m  d o m a i n  for this KBS is w e l l  bounded and w e l l  

defined. H e n c e  reasoning skills required by such a KBS are 

relatively simple. T h e  knowledge required, however, i s  large 

because of the number and variety o f  automotive subsystems 

involved and the h i g h  degree of their interdependence. In 

addition, the system also contains a data base. The data base of 

the s y s t e m w o u l d  contain a description o f  each car serviced at 

the agency. T h e  descrption w o u l d  contain the configuration of 

the vehicle’s-engine, running gear, and optional and special 

equipment a s  well as the year of m a n u f a c t u r e ,  m o d e l ,  color, 

service history, etc. 

Like all KBSs, this hypothetical automotive consultant 

s y s t e m  contains two k i n d s  of knowledge: 
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( 1 )  G e n e r i c  knowledge about the m a j o r  elements of the 

vehicle (such as i t s  cooling, ignition, and fuel 

sys t ems 1. 

( 2 )  Knowledge about the m o d e l  and its specific options. 

T h e  intent of the system i s  to recomnend: 

( 1 )  The least expensive tests that will produce the 

greatest amount of specific information about the 

cause of the problem. . 

( 2 )  T h e  least expensive repairs for the problem. 

( 3 )  The best post-repair testing to verify that the 

p r o b l e m  i s  solved. 

T h e  following i s  a hypothetical scenario of such a s y s t e m  in 

operation. T h e  users are the service representative and the 

mechanic(s) performing the t e s t  and repair w o r k .  T h e  user 

language is a stylized English designed to convey a m a x i m u m  

amount of information between the user and the s y s t e m  with a 

m i n i m u m  amouht of effort. 
- 

Svstem: Tuesday, May 3, 1977, 0 8 : 3 2 : 4 4  

S e r v i c e  m: Next customer 



2s 

S v s t a :  - Enter owper's name or vehicle ID number 

S e r v i c e  n: 1743 HBAQ 8197 

Svstem: O w n e r  i s  S.B. Franklin, car is 1974 Ford G r a n  

Torino 4-dr sedan w i t h  351-2V engine, A/C, PIS, 

P/B and CA smog controls. Last service - April 

4 ,  1977 a t  28,412 mi R&R w a t e r  pump and lower 

radiator hose, what i s  present m i leage? 

S e r v i c e  w: 29285 
i' 

Svstbm: Please inform owner that the following regular 

maintenance services a r e  due: 

C h a nge o i l  and filter - l a s t  changed on J a n  13, 

1977 at 2 4 , 8 4 2  mi. 

M a y  w e  b e  o f  other service? 

Service -: Battery not keeping charge, barely able to 

start c a r  this a.m. 

Svstem: Any other symptoms or problems? 

- 
Service-: No 

Ssstem: C h e c k  b e l t  tension o n  alternator - m o s t  likely 

cause. 

Service rep: Why? 



auudm: - Last service required removal o f  f a n  and belts, 

- very likely that tension w a s  not properly set 

on reinstallation. 

Service ~ _ k e :  M o r e  (meaning m o r e  things to be checked or 

tested) 

Sastem: C h e c k  fluid level in battery - next most likely 

cause - overcharged battery. If level is low, 

check alternator output and voltage regulator. 

S e r v i c e  -: Replace battery? 

Svstem: No, battery is 6 m o n t h s  old and should take 

recharge. 

Service -: T h a n k  you. (Signal to s y s t e m  that session is 

ended for now) 

Svstem: C a r  assigned number 287 in control system. 

First test to be performed by J.K. Uzzi in Bay 

1 7 .  

After the car is m o v e d  to the mechanic’s work area and the 

prescribed tests are performed, the following interchange 
- 

takes place between the mechanic and the system: 

JKU 17, 287 (indicating m e c h a n i c ,  bay and car 

being serviced) 



Sastem: 1974 G r a n  T o r i n o ,  test results please. 
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Belt tension OK, battery level OK, charge low, 

alternator, VR output OK. Pr o b l e m  not found. 

Svstem: Test for above-normal current f l o w  with 

ignition off. (Mechanic attaches m e t e r  and 

takes reading 1 .  

chanic : Reading above normal. 

Svstem: C h e c k  for faulty switch in hood light, trunk 
- x  light, and courtesy lights. 

M e c h a n i c  finds faulty switch in trunk light s u c h  that light 

never turns off. 

1c: Fault trunk light switch R&R. Current reading 

normal. Thank You. 

Ssstem: Y o u  are welcome. Bye. 

Some o f  the salient features of this hypothetical KBS are: 

( 1 )  S 2 p a r a t i o n  of generic knowledge f r o m  specific 

knowledge. 

( 2 )  T h e  dialog between the s y s t e m  and the user (mechanic 

or service representative) has the flavor o f  

naturalness. 
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( 3 )  Expertise. 

For a s y s t e m  to have suggested checking the belt tension of 

the alternator, i t  w o u l d  have to k n o w  that the earlier removal of 

the belt could be related to the present problem, that the 

severity of the p r o b l e m w o u l d  depend on h o w  poorly the tension 

w a s  adjusted, and that the one m o n t h  and about 900 mi l e s  before 

appearance of symptoms (battery failure) i s  not unreasonable. 

Since i t  is a highly probable cause and the easiest to t e s t ,  i t  

ranks as the first suggestion. By requesting m o r e  information, 

the service representative c a n  t e l l  the owner w h a t  else may be 
r t  

required and w h a t  will not likely be required such as a n e w  

battery. 

Figure 2 - 1 ,  based o n  [Barnett & Bernstein, 771 and 

[Hayes-Roth, e t  al, 831, shows a n  idealized representation of an 

KBS. A KBS i s  composed of four components ( o r  modules): 

( 1 )  A K n o w l e d g e  Base 

( 2 )  &-Inference Engine 

( 3 )  An Interface 

( 4 )  A W o r k s p a c e  

T h e  knowledge base contains the knowledge sources (rules 
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and information about the current problem, etc.) and fact f i l e s .  

T h e  - inference engine (also called cognitive engine) 

performs the system’s p r o b l e m  solving (inference-making o r  

reasoning) operations. I t  contains procedures that manipulate 

knowledge contained in the knowledge base. 

T h e  interface provides problem-oriented, interactive 

comnunications between the user and the KBS. This interaction 

is usually in some restricted variant of English and in some 

cases via m e a n s  of a graphics or intelligent editor. 

A wo r k s p a c e  (also called blackboard) records intermediate 

hypotheses, decisions, and results that a KBS manipulates during 
c l  

a problem-solving activity. 

The knowledge base ( K B )  of a KBS contains knowledge sources 

(KSs) and fact files. 

2.4.1 m w l e d u  S o u r c e s  

A knowledge source cont ins rules, tipulations of the 

existence or-non-existence of certain things, simple equivalence 

relationships, relationships between the concrete and abstract, 

knowledge of conventions about the domain, m e t h o d s  of the domain, 

etc. In other w o r d s ,  the breadth of knowledge acquired by one 

w h o  has become expert in solving problems in the d o m a i n  f o r  w h i c h  

the KBS is designed [Barnett & Bernstein, 771. 
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In a KBS, it is logical to separate knowledge into different 

knowledge sources because : 

( 1 )  In a n y  p r o b l e m  domain, each expert acquires different 

problem-solving knowledge and there is no efficient 

single m e t h o d  for representing all of the knowledge. 

( 2 )  In a n y  problem-solving activity, two types ( o r  levels) 

o f  knowledge is involved: problem-specific knowledge 

a n d  h o w  to use this knowledge. T h e  latter is usually 

called "meta knowledge". - L  

2.4.2 F a c t  Files 

Fact files c o n t a i n  "hard" data such a s  v a l u e s ,  attributes, 

etc. (for example, the contents of a n  engineering handbook) and, 

in this sense, i t  i s  equivalent to a data base. Fact files are 

required for the complete solution of a problem. A collection of 

fact files w i t h o u t  a knowledge source i s  not a knowledge base. A 

MIS constructed f r o m  a conventional data m a n a g e m e n t  s y s t e m  is not 

a KBS [Barnett & Bernstein, 7 7 1 ,  because i t  does not have 

reasoning or inferencing capability. 
- 

E v e n  t h o u g h  K B S s  w e r e  and are being developed for a variety 
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of applications (see Section 2.1.2, "Types of KBSs"), the 

knowledge in-KSs in those systems generally falls into the 

following five types [Barnett & Bernstein, 7 7 1 :  

- 

(1 )  M e t h o d s  specifying cause-effect relationships, 

implications, or inferences depending on the richness 

of the relationship to b e  represented. Production 

rules, predicate calculus expressions, and other 

logical m e t h o d s  w e r e  used f o r  representation of this 

type. Diagnosis systems typically use this type of 

knowledge. For example, MYCIN uses simple IF-"X& 

f o r m  of rules. 

(2) P l a n s  of a c t i o n  for h o w  one w o u l d  achieve a n  end 

result in the w o r l d  external t o  the m o d e l  that the 

s y s t e m  represents. For instance, in a robotic system 

a procedure m a y  describe h o w  to assemble parts of a n  

automobile engine or, simply, h o w  to put a block on 

top of another. 

M o d e l s  of agent behavior to infer the effects of the 

planning agent activities are used for representation 

of- this type. Planning systems typically use this 

type of knowledge. 

NOAH, a robot planning s y s t e m  is an example of this 

type and is described in [Sacerdoti, 7 5 1 .  



3 3  

( 3 )  Declaratives that identify objects within the modeled 

d o m a i n  - and distinguish them f r o m  objects that are not 

within the domain. These declaratives may describe 

properties of objects, relationships among objects, 

definitions of terms or constructs, schemata that 

identify the legal relationships or transformations 

applicable to the domain. 

Semantic networks are used for representation o f  this 

type of knowledge. Interpretation and diagnostic 

systems typically employ this type of knowledge. 

F o r  example, CADUCEUS consists o f  a n  extremely l a r g y  

semantic network of relationships (approximately 

100,000 associations) between diseases and symptoms in 

internal medicine [Pople, 8 1 1 .  

( 4 )  M e t a  properties, w h i c h  are a higher level of 

abstraction about the d o m a i n  and the solution space 

and methods. M e t a  properties ( o r  m e t a  knowledge) 

provide m e a n s  for determining and assuring the 

consistency, coherency, and reliability o f  

intermediate results and steps as w e l l  a s  the final 

sb-lution and answers. 

P r o d u c t i o n  rules o f  the IF-THEN type use this type of 

knowledge as w e l l  a s  knowledge acquisition systems. 

An example of latter type is TEIRESIAS. TEIRESIAS 

uses m e t a  knowledge to transfer expertise f r o m  a human 
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expert to the knowledge base of a high-performance 

p r o g r a m  (MYCIN) in a dialog conducted in a restricted 

subset of English [Davis & Lenat, 8 2 1 .  

( 5 )  A d v i c e  (sometimes called heuristics) that i s  similar 

to m e t a  properties in intent, but that does not carry 

the same strength of influence. T h i s  is the "soft" 

knowledge that experts acquire f r o m  experience in 

w o r k i n g  in the domain and i s  rarely contained in 

textbooks and papers [Barnett & Bernstein, 771. 

T h e  techniques used to construct these types of knowledge 

a r e  discussed in C h a p t e r  3, "Techniques U s e d  to Construct KBSs". 

2 . 5  Inference Ennine. 

The inference engine ( I E )  provides central control of the 

KBS and thus affects both the performance and power of the 

system. T h e  functions of a n  IE can be broadly d i v i d e d  into three 

categories: knowledge use and control knowledge acquisition, and 

expl ana t ion ._. 

An IE performs the system's p r o b l e m  solving operations. 

This includes inference m a k i n g  or  reasoning, and searching. An 
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IE contains procedures that combine and organize (i.e., 

manipulate),-the contents of a knowledge base. T h u s ,  a n  IE acts 

as a m a n a g e r  of a knowledge base. 

A small portion of knowledge in a KBS usually resides in the 

IE ( f o r  reasons of efficiency). The knowledge contained in the 

IE may be general knowledge or m e t a  knowledge (knowledge about a 

k n o w l e d g e  base). 

. . .  2 . 5 . 2  ILpowledne A c a u i s i t i ~  

A n o t h e r  f u n c t i o n  of the IE is  to provide the mechanisms that 

facilitate the acquisition of n e w  knowledge, the m o d i f i c a t i o n  or 

refinement of existing knowledge, and deleting erroneous or  

u s e l e s s  knowledge, and maintaining consistent representation - 

all of w h i c h  are done in cooperation w i t h  the expert. 

2.5.3 h ~ l a n a t i o n  

Another important function o f  the IE i s  t o  provide an 

e x p l a n a t i o n  for i t s  actions and i t s  reasoning process w i t h  

respect to an interaction w i t h  the user o r  to a solution i t  

produces. In- g e n e r a l ,  i t  answers questions about w h y  some 

c o n c l u s i o n  w a s  reached or w h y  some alternative w a s  rejected. 

T h i s  explanation capability of the IE depends on the contents of 

the KB, information about the current problem, and prior 

interactions with the user. 

The explanation of the IE is related only to its past 
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activity; t h e  system cannot explain h o w  i t  m i g h t  deal with a 

h y p o t h e t i c a l - c a s e  o r  h o w  i t  will continue in solving a present 

p r o b l e m  [Barnett & Bernstein, 771. 

A KBS's ability to solve a particular problem depends on: 

( 1 )  How m a n y  paths there are to a solution. 

( 2 )  T h e  ability o f  the IE to reduce the number to a 

mi n imum. 

( 3 )  T h e  knowledge in the KB. 

( 4 )  W h a t  information is available within the p r o b l e m  

statement. 

T h e r e f o r e ,  although the IE i s  in comnand and acts as the 

driving element, the p a t h  to a solution, and the criteria for 

w h e n  to accept a solution or abort a particular path are highly 

dependent on the content of the KB and the p r o b l e m  data. That i s  

w h y  r e s e a r c h e r s  have found that "amassing a large amount of data 

rather t h a n  sophisticated reasoning techniques is responsible for 

the power of the system" [Gevarter, 8 3 1 .  

2.6 Interface 

T h e  interface i s  the conmunication port between the system 

a n d  the outside world. B a s e d  o n  the functions provided, the 

interface of a KBS c a n  be viewed as three different interfaces: 
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user interface, knowledge acquisition (expert) interface, and 

data interface. E a c h  one is discussed in the following 

sub-sections. 

2.6.1 U s e r  J I  

T h e  user interface provides the necessary facilities for the 

user as a p o s e r  of problems and consumer of results (answers and 

justifications or explanations). T h e  user interacts with the 

interface in a jargon specific to the domain o f  the KBS and 

usually in some restricted variant of English (and sometimes v i a  

m e a n s  of a graphics o r  intelligent editor). T h u s ,  the user 

interface a c t s  as a language processor. Typically, the language 

processor parses and interprets user questions, comnands, and 

volunteered information. Conversely, the language processor 

formats information generated by the system, including answers t o  

questions, explanations and justifications for it’s behavior, a n d  

requests f o r  data. 

Existing KBSs generally employ natural language parsers 

w r i t t e n  in INTERLISP to interpret user inputs, and use less 

sophisticated techniques exploiting canned text to generate 

m e s s a g e s  to the user [Hayes-Roth, et al, 831. 

The knowledge acquisition (KA) interface (also known a s  
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expert interface) is used by a d o m a i n  expert (who has gained some 

feeling f o r - t h e  system) as the provider of knowledge for the KSs. 

As s o c i a t e d  with the KA interface i s  some m e a n s  of verifying the 

incoming knowledge, sometimes limited to syntax checking, but 

often including tests for coherence and consistency with prior 

knowledge both in the KSs and the IE. 

T h e  knowledge acquisition process is discussed in m o r e  

detail in Section 3.5.4, "Knowledge Acquisition Process". 

2.6.3 D a t a  Interface 

T h e  data interface i s  similar to that o f  m o s t  other 

interactive computer systems in that i t  incorporates: 

( 1 )  Facilities for user input of parameters, data, and 

responses to the system's queries. 

( 2 )  T h e  m e c h a n i s m  for locating and accessing files or data 

bases. 

Many o f  the functions necessary to provide the data 

interface may be drawn directly f r o m  the computer system 

environment within w h i c h  the KBS functions. 



2.7 W O ~ S D ~ C ~  D D r e s e n t a t i m  

W o r k s p a c e  (also k n o w n  as ”blackboard”) records intermediate 

hypotheses, decisions, and results that a KBS manipulates during 

a problem-solving activity, i.e., i t  i s  the encapsulation of the 

system’s current state in a problem solving activity. I t  

includes plan, agenda, history, and solution set. 

2.7.1 Plan 

A plan describes the overall o r  general attack the s y s t e m  

will pursue against the current problem, including current plans, 

goals, p r o b l e m  states, and contexts. 

2.7.2 A g e n d a  

An agenda is a list o f  activities that c a n  be done next 

w h i c h  generally correspond t o  knowledge base rules that are 

relevant to some decision t a k e n  previously. 

2.7.3 fList0i-X 

H i s t o r y  records w h a t  has been done (and why) to bring the 

s y s t e m  to its current state, w h i c h  is used to provide 

explanations. 
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2.7.4 m u t  ion skt 

A solution s e t  represents the candidate hypotheses and 

decisions the s y s t e m  has generated thus far, along w i t h  the 

dependencies that relate decisions to one another. 

2 . 8  S e o a r a t  ion nf I(Bs Cixnxumm 

T h e  separation of the elements of a KBS i s  a necessary 

c o n d i t i o n  for including a s y s t e m  in that category, s i n c e  i t  

p ermits the changing o f  the domain of application by extending-, 

expanding, or substituting another KB independently of the 

inference engine [Barnett & Bernstein, 771. 

Several researchers have illustrated the generality of their 

systems by showing that they can be applied to another domain 

m e r e l y  by removing the rules for a given domain (i.e., knowledge 

base) and substituting rules for the n e w  one  [Van M e l l e ,  791, 

[Goldberg & W e i s s ,  801. 

For example EMYCIN is the inference engine of MYCIN, to 

w h i c h  several different knowledge bases have been experimentally 

a t t a c h e d  for solving different classes of problems. 

Every d o m a i n ,  however, has i t s  own peculiarities. Despite 

the good intentions of s y s t e m  builders, these peculiarities 

inevitably influence the d e s i g n  of a system. As a result, a 

s e r i o u s  attempt to build a KBS almost always changes in all parts 

of the s y s t e m  [Duda & Gashing, 8 1 1 .  Recognizing this, many 
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researchers have recently begun developing tools or languages for 

constructing- KBSs. T h e y  are discussed in C h a p t e r  4, “KBS 

Building T o o l s  and Languages”. 

2 . 9  

In sunmarg, to qualify as a KBS, a system m u s t  [Barnett & 

Bernstein, 771 : 

( 1 )  Be externally invoked by an expert i n  the domain of 

applicability. 

( 2 )  H a v e  a n  identifiable IE that reasons plausibly using 

the KB and w h o s e  solution path is controlled by the 

content of the KB and problem data. 

( 3 )  H a v e  the potential for explaining i t s  behavior. 

( 4 )  H a v e  a n  identifiable KB that contains expert 

domain-specific knowledge (this is t h e  most critical 

aspect of a U S ) .  

( 5 )  Be organized and structured s o  that i t s  KB can be 

eipanded and extended and the system’s performance 

improved. 



Chapter 3 

TECHNIQUES USED TO CONSTRUCI' KBSs 

3.1 J n t r o d u c t i o Q  

S i n c e  the mid-60's, there has b e e n  a m a j o r  shift in AI 

research. T h e  shift w a s  f r o m  a search f o r  broad, general laws of 

thinking toward a n  appreciation o f  specific knowledge - facts., 
experiential knowledge, and h o w  to use knowledge - as the central 
issues in intelligent behavior [ F e i g e n b a u m & M c C o r d u c k ,  831. A 

direct result o f  this shift (called "applied AI") is construction 

o f  KBSs o r  expert systems. T h u s ,  AI techniques are w i d e l y  used 

in KBS construction. In addition to AI, several other computer 

science areas have developed techniques that are used in the 

construction of KBSs. A sumnary of contributors and techniques 

i s  s h o w n  in Table 3-1. 

F o r  example, language processing techniques - specifically, 

parsing a n d  understanding, question and response generation, 

knowledge representation and acquisition - are used f o r  the 

interface component of KBSs. 

4 2  



_ -  Table 3-1 ORIGINS OF KBS TECHNIQUES 
(Based on [Barnett & Bernstein, 7 7 1 )  

ARTIFICIAL IHTELLIGENCE (AI) 

Heuristic Search 
Inference and Deduction 
Pattern Matching 
Knowledge Representation and Acquisition 
System Organization 

LANGUAGE PROCESSING 

Parsing and Understanding 
Question and Response Generation 
Knowledge Representation and Acquisition 

THEORY OF P R O G W N G  LANGUAGES 

Formal Theory of Computational Power 
Control Structures 
Data Structures 
System Organization 
Parsing 

MlDELING AND SIhaTLATION 

Representation of Knowledge 
Control Structures 
Calculation of Approximations 

DATA BASE MANAGEMENT 

Information Retrieval 
Updating 
File Organization 

SOnWARE- ENGINEERING 

System Organization 
Doc m e n  t a t i on 
I t e r a t i v e  System Development 

APPLICATION AREAS 
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Doma i xi- Spe c i f i c A1 go r i t h m s  
Human Engineering 
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Similarly, data base management techniques - specifically, 

information-retrieval, updating, file organization - are used for 

the knowledge base component o f  KBSs. 

Figure 3-1 ( a  modification of [Barnett & Bernstein, 7 7 1  p. 

4.3) illustrates the relationships between choices and 

restrictions in building KBSs. T h e  left hand side (lhs) of the 

dotted line in Figure 3-1 shows domain specific items (or 

choices) and the right hand side (rhs) shows available techniques 

( o r  restrictions). 

F o r  example, in any problem domain, the expert’s available 

knowledge m o d e l  necessarily limits (or restricts) the choices for 

representing knowledge in a KB.  Similarly, the expert’s 

reasoning principles and methods directly affect (or restrict) 

m e t h o d s  that c a n  be used to build a n  IE in a KBS. 

Likewise u s e r  expectations d i c t a t e  (or at least influence) 

e x p l a n ation facilities. 

Figure 3-1 also illustrates another interesting point: 

relative impo-rtance of choices in a KBS. According to Barnett & 

B e r n s t e i n  [Barnett & Bernstein, 7 7 1 ,  domain considerations are 

m o s t  important followed by choices of KB representation. 

Everything else is of less importance. W h e t h e r  this is a fact or 

a practice is not certain. H o w e v e r ,  m a n y  existing KBSs co n f i r m  

this v i e w  [Hayes-Roth, et al, 8 3 1 .  
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3.1.3 m w l e d a  U n r e s e n t a t  iQn P_roblems 

In contrast to conventional data base systems, KBSs require 

a knowledge base with diverse kinds o f  knowledge - knowledge 

about objects, about processes, and hard-to-represent conxnon 

sense knowledge about goals, motivation, causality, time, 

actions, etc. Attempts to represent this breadth of knowledge 

raise many questions [McCalla, 8 3 1 :  

( 1 )  H o w  d o  w e  structure the explicit knowledge i n  a 

k n o w 1  edge ba s e? 

( 2 )  H o w  d o  we encode rules for manipulating a knowledge 

base’s explicit knowledge to infer knowledge contained 

implicitly within the knowledge base? 

( 3 )  W h e n  d o  w e  undertake and h o w  do w e  control such 

inferences? 

( 4 )  H o w  d o  w e  formally specify the semantics of a 

k n o w l e d g e  base? 

( 5 )  H9w d o  w e  deal w i t h  incomplete knowledge? 

( 6 )  H o w  d o  we extract the knowledge of a n  expert to 

initially ”stock” the knowledge base? 
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( 7 )  How do w e  automatically acquire n e w  knowledge as time 

goes on so that the knowledge base c a n  be kept 

current? 

In Section 3.2, some knowledge representation techniques are 

discussed, w h i c h  answer some of the abovementioned problems. 

3.1.4 I ( M w l e u  B e D r e s e n t a t i o ~  * E m n &  

Knowledge o f  a domain takes m a n y  forms through a KBS (Figure 

3-2). A domain expert acquires knowledge through textbooks, 

journals, experience, etc. The expert’s knowledge (or expertise) 

will be transformed to a knowledge acquisition (KA) facility in 

external form. The KA facility transforms the external 

representation into physical f o r m  (data structures, etc.) and 

stored in a knowledge base. T h i s  process i s  t e r m e d  knowledge 

acquisition. I t  involves p r o b l e m  definition, implementation, 

refinement, and representation of facts and relations acquired 

f r o m  a n  expert. T h e  KA process is discussed in detail in Section 

3 . 5 . 4 .  

W h e n  an- inference engine accesses the KB, the logical f o r m  

(usually in the f o r m  o f  questions) is used at the interface. For 

example, during a problem solving activity, the IE could a s k  the 

K B w h e t h e r  a particular hypothesis is true o r  not. 

F r o m  the IE, knowledge is transformed to advice or  

explanation w h e n  it reaches the user interface. 
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Finally, knowledge is transformed back into external form 

(in stylized- English) to the user. 

Figure 3-2 sumnarizes the transformations of knowledge 

representations throughout a KBS. 

3.1.5 BeDresentat i o n  Unit 

S e l e c t i o n  of a representation scheme for building a KBS i s  

influenced by answers to questions of following type [Barr & 

Feigenbaum, 8 1 1 :  

( 1 )  In w h a t  detail are objects and events of the external 

w o r l d  represented in a system? 

( 2 )  A n d  h o w m u c h  o f  this detail is actually needed by the 

reasoning m e c h a n i s m  (or IE)? 

T h e  answer to these questions depends o n  the size of a 

knowledge c h u n k  (also called g r a i n  size). A knowledge chunk is 

described as ”a primitive unit in the knowledge representation, 

i.e., in a KB that contains the definitions of several 

interrelated terms, the definition of a single t e r m  i s  a ’chunk”’ 

[Barnett & Bernstein, 771. 

F o r  example, inMYCIN, each rule o f  the type shown b e l o w  is 

considered as a m o d u l a r  c h u n k  of knowledge. 
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IF 

1) T h e  infection i s  primary bacteremia, and 

2 )  T h e  site of the culture is o n e  of the 
sterilesites, and 

3) T h e  suspected portal of entry of the organism is 
the gastrointestinal tract 

THEN 

T h e r e  is suggestive evidence ( . 7 )  that the identity o f  
the o r g a n i s m  is bacteriods. 

T h e r e  i s  n o  formal metric to define the "right" chunk size, 

yet i t  is a important consideration to KBS technology for three 

reasons: 

( 1 )  I t  determines the level at w h ~ c h  the expert c a n  

instruct the system. If the correct chunk size i s  

c h o s e n ,  the expert could add and m o d i f y  the knowledge 

base in a natural way. If, o n  the other hand, the 

chunk s i z e  i s  too big or too s m a l l ,  the expert is 

f o r c e d  into a n  unnatural m o d e  o f  expressing his 

knowledge. 

( 2 )  I t  influences the capability of a n  explanation 

facility, and user acceptance o f  a KBS, in part, 

depends o n  i t s  e x p l a n a t i o n facility. 

( 3 )  It determines the kinds and efficiency of reasoning 

techniques to be used in the KBS. Larger chunk sizes 
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generally permit shorter lines o f  reasoning. For  that 

reason, they are m o r e  likely to lead to a correct 

conclusion w h e n  inexact but plausible inference 

techniques are used [Barnett & Bernstein 7 7 1 .  

- .  

.Factors . . .  3.1.6 C r e d i b i l i t v  

Expert systems are built to deal w i t h  real w o r l d  problems in 

which reasoning i s  o f t e n  judgemental and inexact o r  uncertain, 

i.e., axiomatic knowledge i s  not always available. There are two 

reasons f o r  uncertainty : 

( 1 )  T h e  expert w h o  helps build the KBS m a y  not be 

absolutely certain about a particular aspect o f  the 

p r o b l e m  domain. 

( 2 )  U s e r  m a y  not be able to provide the necessary input 

data to the s y s t e m  o r  i t  m a y  not b e  possible to obtain 

data within the time and other constraints. 

In t h e  former case, experts rate knowledge chunks as to 

their credibility o r  uncertainty w h e n  they enter them into the 

KB . In the latter case, relevant hypotheses o r  rules are 

combined with each other and with problem-specific parameters. 

T h e  inference engine has the m a j o r  responsibility in both cases. 
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C o n s i d e r  the following rule in MYCIN: 

IF 

1 )  T h e  infection is primary-bacteremia, and 

2 )  T h e  site of the culture is one o f  the 
sterilesites, and the 

3 )  T h e  suspected portal of entry of the o r gan i s  the 
gastro-intestinal tract, 

THEN 

T h e r e  i s  suggestive evidence ( . 7 )  that the identity of 
the organism i s  bacteroids. 

T h e  numbers used to indicate the strength of the rule (for 

example. . 7  above) are called credibility factors (certainty 

factors, CFs, in MYCIN terminology). 

T h e  interpretation of CFs in the above example is that the 

evidence is strongly suggestive, ( . 7  out of 1 )  but not absolutely 

certain. 

MYCIN evaluates its rules in three steps [Nau, 8 3 1  : 

( 1 )  T h e  CF of a c o n j u n c tion of several facts i s  taken to 

b e  the minimum of the CFs of the individual facts. 

( 2 )  T h e  CF for the conclusion produced by a rule is the CF 

of its premise multiplied by the CF o f  the rule. 

( 3 )  T h e  CF for a fact produced as the conclusion of one o r  

m o r e  rules i s  the maximum of the C F s  produced by t h e  

rules yielding that conclusion. 
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The following illustrates the above process. 

Suppose MYCIN is trying to establish fact F1 and the only 

rules concluding anything about F1 are : 

IF C1 and C2 and C3 THEN conclude F1 (CF = - 6 )  

IF C4 and CS THEN conclude F1 (CF = . 8 )  

Further suppose that conditions Ct, C2, C 3 ,  C 4 ,  and CS are 

k n o w n  w i t h  CFs .4, .8, .6, .7, .9, respectively. T h e n  the 

following c o m p u t a t i o n  produces a CF o f  .56 for F1. 

IF C1 and C2 an d  C3, 
THEN F1 (CF = . 6 )  

CF(C1) = . 4  I 
CF(C2) = . 8  I - )  
CF(C3) = . 6  I 

IF C4 and C5. 
F1 (CF = . 8 )  

I I 
I I 
I I 
I - )  . 6  x .4 = .24 I 

min = .4 I I 
I I 

I 
I I 
I I 
I - >  . 8  x . 7  = . 5 6  I 
I I 

min = .7  I I 

I - >  -X = . 56  

I n  the a b o v e  example, w e  assumed that the conditions C 1 ,  C2, 

C3, C4, and C5 w e r e  established by other rules. 

T h e r e  a r e  at least three other m e a n i n g s  or interpretations 

o f  credibility factors [Barnett & Bernstein, 7 7 1  : 

: the fraction of the time the chunk i s  ( 1 )  A P r o b a b i l i t v  . .  

true. 
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( 2 )  Belev-: w h a t  is the probability that use of this 

c h u n k  will ultimately lead to a completed chain of 

reasoning that solves the problem at hand? 

: is this a preferred m e t h o d  o r  fact to ( 3 )  A c c e p t a b i l i t v  . .  

w o r k e r s  in the field? 

Because the mathematics for combining and evaluating each of 

the four interpretations i s  different, there should be a n  

agreement between the knowledge engineer (who builds the KBS) and 

the expert (who instructs the system) a s  to the kind of 

credibility factors to be used. 

A different approach, called "fuzzy logic", in dealing w i t h  

uncertainity is described in [Zadeh, 7 5 1 .  

3.1.7 P r o c e d u r a l  Y e r s u L  Declarative R e D r e s  e n t a t i u  

In the area of AI, there had been a "battle" between 

proponents of procedural representation o f  knowledge 

(proceduralists) and advocates of declarative representation of 

knowledge (declarativists) m u c h  similar to the battle in the area 

o f  computer i-rchitecture between stack architecture advocates and 

register architecture advocates. 

In the case of AI, at least, the issue is dissolved, rather 

t h a n  being resolved and one may argue that ( 1 )  there is n o  

strictly formal difference in the power o f  the two - they are 



b o t h  "universal" - and that ( 2 )  both are necessary [Barr & 

F e i g e n b a u m ,  - 8 1 1 .  T h e  m a j o r  issue is management of complexity. 

KBSs s e e m  to have done w e l l  in this aspect by selecting n a r r o w  

and specific p r o b l e m  domains. 

Declarativists argue that, using reasonably modular and 

independent knowledge chunks that are combined by a general 

purpose reasoning mechanism, a system can produce results that 

c a n  be used for m u l t i p l e  purposes. T h e  other qualities of 

declarative representation claimed by declarativists are: 

flexibility, economy, completeness, certainty, and modifiability. 

Proceduralists, o n  the other hand, argue that some humah 

knowledge (or intelligent behavior): 

( 1 )  S e e m s  inherently non-modular. 

( 2 )  I s  difficult to express a s  independent rules o r  facts. 

(3) H a s  the ability to apply specialized rules to exploit 

situation-dependent relationships among knowledge 

chunks. 

H e n c e  a proceduralist believes that m a n y  ad hoc 

interrelationships should be m a d e  explicit and that procedures 

are the best w a y  to d o  this [Barnett 8z Bernstein, 7 7 1 .  The other 

qualities claimed by proceduralists are: directness, ease o f  

coding, and understandab lity of the reasoning process itself. 
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The following example illustrates some of the issues 

invo lved . 

A declarative representation of the statement, "All computer 

science ( C M P S )  m a j o r s  at USL are smart" could be 

For all I, [USLStudent(x) & CMPSMajor(x) -- ' Smart(x)] 

A simple reasoning m e c h a n i s m  could use this single statement 

for m a n y  purposes. For instance, to answer the question, "Is Lin 

smart?", i t  w o u l d  check to see whether L i n  i s  a USL student and a 

(XIPS M a j o r .  T h e  answer i s  "yes". The s a m e  statement (or fact) 

could be used to infer that "Joe i s  not a W S  Major" given the 

fact that "Joe i s  a stupid student". This example illustrates 

that a n  explicit representation of knowledge or a fact can be 

used for m u l t i p l e  purposes. 

I n  a strictly procedural representation, the statement needs 

to be represented differently for each usage. E a c h  w o u l d  demand 

a specific f o r m  o f  the type " I f  y o u  find a USL student, check to 

see w h e t h e r  he/she i s  a M S  M a j o r ,  and if s o ,  assert heishe is 

clever". 

An example to illustrate the advantages o f  procedural 

representation i s  provided below. T h e  example i s  taken f r o m  

[Kuipers, 7 5 1 .  

C o n s i d e r  a robot w h i c h  manipulates a simple w o r l d  such as a 

table top of toy blocks. T h i s  can be done most naturally by 

describing i t s  m a n i p u l a t i o n s  as programs. The knowledge about 
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building stacks is in the form of a program to do it. Since we 

specify in detail just what part will be called when, we are free 

to build in assumptions about how different facts interrelate. 

For example, we know that calling a program to lift a block 

will not cause any changes in the relative positions of other 

blocks (making the assumption that we will only call the lift 

program for unencumbered blocks). In a declarative 

representation, this fact must be stated in the form something 

equivalent to 

" I f  you lift a block X, and block Y i s  on block 2 before you 
start, and if X is not Y and X is not 2 and X i; 
unencumbered, then Y is on 2 when you are done". 

This fact must be used each time we ask about Y and 2 in 

order to check that the relation still holds. This knowledge is 

taken care o f  "automatically" in the procedural representation 

because w e  have control over when particular knowledge will be 

used, and deal explicitly with the interactions between the 

different operations. 

3 . 2 . 1  Jntroductioq 

"Knowledge differs from information in that i t  i s  a property 

of  the knower, interpreted by him through an internal 
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representation system, preparing him for action" [Kochen, 7 4 1 .  

This -highlights the importance o f  efficient m o d e s  of 

representation. T h e  underlying p r o b l e m  of understanding 

knowledge is the q u e s t i o n  of h o w  to represent large amounts of 

.. 

knowledge in a fashion that permits their effective use and not 

that o f  finding some powerful techniques of implementing 

intelligent systems [Goldstein, 7 7 1 .  

T h e  two major  approaches are: 

( 1 )  Power-based strategy. 

( 2 )  Knowledge-based strategy. 

In the first approach, we try to increase the computational 

power of the m a c h i n e  to be able to perform a n  efficient search 

a n d  m a t c h i n g  process. M a n y  researchers have realized that this 

i s  not a constructive idea a s  these methods get overwhelmed by 

combinatorial explosion. 

Instead, i t  w o u l d  be useful to find better w a y s  to express, 

recognize and use various forms of knowledge. A person i s  termed 

s u p erior in intelligence because o f  his efficient and structured 

form o f  representing knowledge and associating i t  w i t h  different 

situations rather than the crude power called "thinking". 

H a v i n g  realized the importance of knowledge representation 

f o r  efficient KBSs, w e  have to choose a n  appropriate form. 
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Different m e t h o d s  of representing knowledge are: 

1. F i n i t e  state machines. 

2. Programs. 

3. Predicate calculus. 

4. P r o d u c t i o n  rules. 

5. Semantic networks. 

6. Frames. 

F e i g e n b a u m  [Feigenbaum. 8 1 1  has very beautifully stated that 

an encyclopedia cannot be termed knowledgeable (or containing 

k n o w l e d g e )  unless one knows h o w  to extract useful information ou't 

o f  i t .  T h e  above m e n t i o n e d  methods are supposed to achieve the 

same goal. T h e  intelligence of any KBS will depend o n  h o w  

efficiently these methods will help programs to extract and 

interpret knowledge contained in the knowledge base. T h e  

representations a r e  broadly classified into 

( 1 )  Declarative 

( 2 )  Procedural 

T h e  n a m e s  themselves suggest their m e a n i n g  (see Section 

3 . 1 . 7 ) .  In t-he first one, w e  "declare" bits o f  knowledge w h i c h  

will be u s e d  by the s y s t e m  to "deduce" c e r t a i n  results. I t  i s  

h i g h l y  m e c h a n i c a l  and helps to derive concrete results. Its m a i n  

disadvantage is that i t  m a y  get drowned in a combinatorial 

explosion created by itself. T h e  other m e t h o d  involves 

procedures f o r  accomplishing certain tasks. T h u s ,  depending on 
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the set of rules followed, certain conclusions c a n  be derived 

f r o m  the procedures. The problem lies in the fact that the 

procedures m i g h t  be unable to conclude for many instances. 

T h u s ,  if w e  could overcome the limitation of declarative 

m e t h o d s  by combining t h e m  with procedural m e t h o d s ,  it might be 

possible to evolve a m o r e  efficient method o f  knowledge 

representation. This w a y  we could have the advantage of ease in 

m o d i f i c a t i o n  provided by declarative representation along with 

the directedness o f  procedural representation. 

I t  h a s  b e e n  v ery rightly said by Newell [Newell, 821 that, 

Representation - Knowledge + Access. 

T h i s  m e a n s  that w e  should represent knowledge s u c h  that w e  

have a s y s t e m  to provide access to i t ,  s u c h  that i t  helps us to 

select a certain action for reaching our goal. T h e  

representation i s  the structure w h i c h  realizes knowledge and 

reduces i t  t o  the next lower level. 

At times, i t  has b e e n  found advantageous to combine 

knowledge representations of different types [Aikins, 831. I t  

should a l s o  be possible to use the s a m e  k n o w l e d g e base for 

m u l t i p l e  uses. T h u s ,  the topic of knowledge representation 

demands thorough understanding for developing efficient 

intelligent systems. 

Knowledge representation forms the heart of KBSs (or Expert 

Systems). The strength of the s y s t e m  lies in the d e p t h  as well 

as  the breadth of knowledge represented in the system. Thus, i t  
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is q u i t e  desirable at the time of designing a n e w  system t o  

decide on -the knowledge representation technique to be adopted. 

There are a f e w  generalized techniques of knowledge 

representation w h i c h  could be used. Many systems designers 

prefer to d e s i g n  their o w n  knowledge representation technique 

w h i c h  m i g h t  be a slight modification of one of the m a j o r  

representation techniques. 

It is virtually impossible to get information on all the 

knowledge representation techniques. As quite a f e w  o f  them are 

application dependent, they m a y  not be useful to other systems. 

T h u s ,  this discussion will concentrate on a f e w  g e n eralizeh 

knowledge representation techniques. W h e r e v e r  possible, examples 

are provided to help the reader in understanding these 

techniques. 

A c c o r d i n g  to F e i g e n b a u m  [Feigenbaum, 8 1 1 ,  at present, there 

is no theory of knowledge representation. We are also not in a 

position to prove that one system represents human m e m o r y  better 

than a n y  other. T h e  objective of this section i s  to highlight 

why c e r t a i n  systems work efficiently f o r  c e r t a i n  knowledge 

representations. 

- . . -  3.2.2 b i t e  State 

3.2.2.1 Int roduc t ion 

A finite state m a c h i n e  (FSM) i s  a k n o w l e d g e representation 

technique o f  procedural type. 
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The FW, as t h e  name s u g g e s t s ,  i s  d C O l l e C t i O n  o f  a f i n i t o  

n u m b e r  o+ states. E a c h  s t a t e  s p e c i f i e s  a c t i o n s  ( o r  c o m p u t a t i o n s )  

t h a t  rhoula bo takm t o  r e a c h  t h e  n e x t  s t a t e .  T h e r e  are two 

s p e c i a l  s t a t e s  i n  a FSM. A s t a r t  s t a t e  is t h e  i n i t i a l  s t a t e  a n d  

a n  e n d  s t a t e  i s  w h e r e  a c t i o n  or c o m p u t a t i o n  t e r m i n a t e s .  

FSMs are w i d e l y  u s e d  i n  p l a n n i n g  s t r a t e g i e s ,  i n  d e s i g n i n g  

d i g i t a l  e l e c t r i c a l  c i r c u i t s  ( a d d e r s ,  f l i p - Q l o p s ,  m u l t i p l i e r s ,  

e t c .  1, a n d  t o  r e p r e s e n t  grammars [Woods, 731. 

3. 2. 2. 2 E x a m n l e  t 

A s i m p l e  example o f  a f i n i t e  s t a t e  m a c h i n e  i s  a l a m p  w i t h .  a 

p u l l - c h a i n  ( F i g u r e  3-3). F u l l i n g  t h e  c h a i n  t u r n s  t h e  l i g h t  o n  i f  

i t  i s  o f f  a n d  o f f  i f  i t  i s  o n .  

F i g u r e  3-3. F i n i t e  S t a t e  M a c h i n e  R e p r e s e n t a t i o n  
o f  a Lamp w i t h  a P u l l  C h a i n .  
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Figure 3-3 i s  a state-transition d i a g r a m  of a pull-chain 

lamp. C i r c l e s  represent states. Transitions are represented by 

a r c s  (or arrows). T h e  actions (or inputs) are represented o n  the 

arcs and reactions ( o r  outputs) are on the right side o f  the 

input separated with a slash. State S 1  is the "lights on" state 

a n d ,  by pulling the chain, a transition i s  m a d e  to state S2, 

"lights off". Likewise, f r o m  state S2 ("off"), by pulling the 

chain, transition i s  m a d e  to state S 1  ("on"). 

T h e  power, size, and reversibility (the ability to reach a n  

initial state f r o m  a final state) o f  a FSM depend on the 

following f o u r  issues [Barnett & Bernstein, 7 7 1  : 

( 1 )  T h e  set of allowable computations in a state. 

(2) T h e  set of decision rules (or predicates) that take a 

FSM f r o m  one state to another state. 

( 3 1 P a r  a m e  t e r i z a t i on. 

( 4 )  T h e  control mechanism. 

3 . 2 . 2 . 3  -2 

T h e  F i g u r e  3-4 illustrates some o f  the issues involved in a 

finite state-&chine representation of knowledge. T h e  circles 

represent states. Arrows (or a r c s )  represent transitions. 

A c t i o n s  are represented inside the circles. D e c i s i o n  rules o r  

predicates a r e  represented o n  the arcs. D e c i s i o n  rules m u s t  be 

satisfied in o r d e r  to go f r o m  one state to another. 
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READY LIGHT OFF 

DARKNESS COFFEE 

THIRSTY 

DR INK 
ANOTHER 

LAZY/ TURN 
SATI SF I ED MR, 'I 

COFFEE END 

LAZY/ 
SATI SF I ED 'I 

FIGURE 3-4, FINITF STATE REPRESENTATION OF A PIAN 

TO M4K F AND DRINK COFFFF USING I t  It MR, C O F F E  
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F o r  example, in Figure 3-4, the state m a r k e d  "Wait" has two arcs 

leaving it.- O n e  i s  labeled "Ready Light Off". FSMwill be in 

this W a i t "  state - then a FSM is said to be blocked - until the 

ready light turns on. W h e n  this happens, the FSM goes to its 

next state, "Drink a Cup" in our example. 

W e  c a n  a l s o  use parameters in a FSM. In o u r  example, the 

number o f  table spoons o f  coffee that are to be used in filling 

the filter is passed as a n  argument (NIMBER) on the arcs leaving 

the state "Fill Filter with Coffee". 

3.2.2.4 Control M e c h a n i s m  

T h e  power of a FSM, a s  mentioned earlier, a l s o  depends on 

i t s  c o n t r o l  mechanism. There are two types of control: 

deterministic and non-deterministic. 

. .  
( a ) R e  t e r m  n i s t i c 

I n  a deterministic F W ,  one a r c  predicate controls the 

t r a n s i tion f r o m  one state to another. This is accomplished 

either by requiring that at m o s t  one arc predicate be true, or by 

having a rule that selects one arc out of the set that qualifies. 

In our example, the state "Drink Another Cup" has three arcs 

leaving i t :  "Thirsty", "Empty", and "Satisfied". O n e  cannot 

d r i n k  coffee f r o m  a n  empty MR. COFFEE even if he is thirsty. So 

there should be a selection rule w h i c h  gives priority for the arc 

"Empty". 
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. .  ( b )  Non - D e t e m i s t i c  

In a n6n-deterministic FSM, i t  is possible for several 

different arcs leaving the same state to be satisfied 

simultaneously. T h u s ,  in a non-deterministic FSM, the next state 

is not completely determined by the current state and i t s  input. 

Instead. a set of next possible states i s  to be determined. If 

any a r c  reaches the end state, the FSMwi11 terminate normally. 

An example w h i c h  illustrates the differences between 

deterministic FSM and non-deterministic FSM is presented below. 

F i g u r e  3-5 shows both a deterministic and non-deterministi? 

FSM that recongnize symbol strings that start w i t h  one or m o r e  

"01" and ends w i t h  two consecutive 1 s  and does not contain two 

consecutive Os. 

In F i g u r e  3-5 circles represent states a n d  the letters 

inside the circles represent the state names. T h u s  "A" is the 

start state and "E" i s  the final state. A r c s  represent state 

transitions and s y m b o l s  o n  the arc represent the inputs (the 

symbol that is scanned) that cause those transitions. 
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Ai D E E  RMI N I ST IC 

0 

B, NON DETERMINISTIC 

I NG FINITE STATE RECOGNIZERS FOR {0,1}* END 

WITH 2 CONSFCUT IVE IS A ND DOE S NOT CONTAIN 
FIGURE 3-5, 

C0NSES;UT I VE OS, 
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Supposk the input string is "010111". Starting in the state 

"A", the successive states into w h i c h  i t  is thereafter driven are . '  

(in order) B, C, B, C, E, E. Since E is the final state, the 

deterministic FSM correctly recognizes the input string "010111". 

If the input i s  "10011", beginning in state "A", the successive 

states into w h i c h  i t  is thereafter driven are (in order) C, B, D, 

D, D. Since D i s  not a final state, the deterministic FSM 

(correctly) fails to recognize "10011". 

* E a 4  . .  . ( b )  - 

A g a i n  suppose the input string i s  "010111". Starting in the 

state "A".  one possible sequence of states into w h i c h  i t  c a n  be 

t h e reafter d r i v e n  are (in order) B, E, B, E, E, E. Since E i s  

the final state, i t  correctly recognizes the input string 

"010111". An o t h e r  possible sequence o f  states is B, E, E, E, E, 

E, w h i c h  correctly recognizes the input string. 

Now suppose the input is "10011". Starting f r o m  state A, 

one possible sequence of states i t  thereafter d r i v e n  i s  E, E, E, 

E, E. Si n c e  E is a final state, the non-deterministic FSM 

Another incorrectly -'recognizes the input string "10011". 

possible sequence of states i s  E, B, D, D. Since D i s  not a 

f i n al state, the non-deterministic FSM (correctly) does not 

recognize the input string. 

In the above example, the deterministic FSM has one m o r e  
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state than the non-deterministic FSM. There are some cases w h e r e  

this factor- makes a critical difference in implementing 

non-deterministic control over deterministic control. However, 

interpretation of a non-deterministic FSM (by a n  inference engine 

in a a s )  is m o r e  complex. 

This section on FSM i s  concluded by discussing the desirable 

and undesirable characteristics of a FSM. T h e  discussion i s  

based on [Barnett & Bernstein, 7 7 3 .  

3.2.2.5 B a r a c  t eris t i c s  pf ESM 

T h e  desirable characteristics are: 

( 1 )  T h e  ability to easily implement nondeterministic 

control. 

( 2 )  T h e  ability to represent and model plans o f  action for 

w h i c h  "procedural" execution inside a computer is 

meaningless. 

( 3 )  Reversibility, i.e., a n  F S M m a y  be examined to answer 

s u c h  questions a s  w h a t  needs to occur to a l l o w  i t  to 

e n d  u p  in a particular state. 

( 4 )  N e w  plans of action m a y  be constructed dynamically 

because a n  FSM representation i s  e a s i l y  manipulated. 

( 5 )  Many disciplines, both scientific a n d  nonscientific, 

represent part of their published expert knowledge in 
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a form similar to that of a n  FSM. 

T h e  undesirable characteristics of FSMs are: 

( 1 )  T h e  loss of efficiency compared to compiled 

procedures. 

(2) T h e  enforcement of low-level uniformity in the 

representation, w h i c h  c a n  m a k e  the FSM hard to 

understand (in a sense, F W  are better at 

representing strategies than tactics). 

( 3 )  The external format of a n  FSM representation c a n  lose 

clarity unless there is a graphic m e d i u m  available for 

computer input and display. 

3.2.3 Using UL bowled!! e 

3.2.3.1 

Procedural knowledge c a n  b e  represented by programs. Figure 

3-6 depicts a p r o g r a m  representation of knowledge necessary to 

adjust the volume o f  a stereo set. The example has two 

arguments : a human agent w h o  will per f o r m  the task, and the 

desired volume of the stereo set. M u c h  w o r l d  knowledge (comnon 

sense knowledge) is embedded in this program. F o r  example, 
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( 1 )  Stereos are in houses, cars, etc. 

( 2 )  Y o u  need to be close to the stereo to control the 

volume 

( 3 )  Turning the knob clockwise increases the volume 

(rightmost - highest or loudest) and turning counter 

clockwise reduces the volume (leftmost - lowest) and 

volume can be adjusted by adjusting the knob. 

( 4 )  Before the volume can be adjusted, the stereo set m u s t  

be switched on. 

( 5 )  Relative values of loudness s u c h  as high, low, m e d i u m ,  

etc. are used and compared. 

B e s i d e s  this w o r l d  knowledge, the p r o g r a m  contains knowledge 

about itself - for example, 

( 1 )  The p r o g r a m w i l l  not go into a n  infinite loop w h i l e  

trying to adjust the volume, because only approximate 

equality i s  necessary to terminate. 

( 2 )  P r o g r a m  '"E'' will effectively m o v e  the agent to the 

desired location, room, in our example. 

( 3 )  Program "ROTATE-KNOB" expects the agent to be in 

proximity of the stereo set. 



7 2  

ADJUST-=-STEREO (AGENT human, DESIRED-VOLIME volume) 

WVE  AGENT, "room"); 
J.E DESIRED-VOLW = "High" or "Loud" 

ELSE Knob-direction c -  "Left"; 
R O T A T E B B  (AGENT, "Right", "Full-turn"); 
IE Knob-direction = "Left" 
mIxL; 

x c -  "Half-turn"; 

Knob-direction c -  "Right"; 

Y H L U  (CURRENT-VOLUVE DESIRED-VOLZME) MT 
LE CURRENT-VOLIME DESIRED-VOLUbdE 
THEN ROTATEXNOB (AGENT, "Left", x); 
ELSE ROTATEBB (AGENT, "Right", x ) ;  
x < -  x/2; 

/ *  WILE * / ;  
/ *  THEN * / ;  

/ *  ADJUST-THE-STEREO * / ;  

Figure 3-6. Procedural Knowledge Example 

The advantage o f  the program representation is that all of 

the knowledge is represented in a natural manner. The 

disadvantages become apparent i f  one tries to extend this example 

to stereo s e t s  where sliding a indicator u p  and down adjusts the 

volume. 

When programs are used to represent knowledge, two options 

are available : invocation methods and control structures. 



73 

3.2.3.2 lnyocat iM M S X h i L  

T h e  f o u r  m e t h o d s  of program invocation are: direct, 

procedural attachment, demon, and pattern directed. 

( a )  Direct 

Direct invocation occurs w h e n  the user (using program) knows 

precisely w h i c h  p r o g r a m  i s  to be used and some identification 

(for example, name) i s  used to reference that p r o g r a m  through a 

m e c h a n i s m  such a s  a subroutine call. 

T h e  basic concept of procedural attachment (PA) i s  that m o s t  

knowledge should be expressed declaratively (as d a t a  structures 

or items) and should permit optional association of programs w i t h  

the knowledge chunks and/or the data i t e m s  w i t h i n  the chunks. 

W h e n e v e r  these knowledge chunks are referenced, the program(s1 

associated w i t h  t h e m  will be executed. T h e  invoker of the 

programmay be unaware both w h a t  p r o g r a m  i s  invoked and w h a t  

functions the invoked program i s  to perform. U s u a l l y ,  only the 

p r o g r a m  that m a k e s  the attachment has that knowledge. 

A d e m o n  i s  like a n  interrupt handler in a n  operating system. 

T h e y  perform no action unless and until a specific situation i s  

encountered. T h e y  a l l o w  knowledge that pertains to highly 
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specialized or unusual situations to be left out of the m a i n  

stream, m a k i n g  programs m o r e  readable and easier to organize. 

(d) P a t t e r n  - Directed 

In a s y s t e m  using the pattern directed (also known a s  

goal-directed) m e t h o d ,  each program i s  n a m e d  by a pattern that 

describes the kind of tasks i t  performs. 

An example of a p a t t e r n  for the “MIVE” goal (Figure 3-6) is 

m V E ( h u m a n ,  object). T h i s  states that the program c a n  plan the 

sequence o f  actions necessary to m o v e  a human into proximity to 

a n  object. A n o t h e r  p r o g r a m  in the same s y s t e m  could have a 
pattern such as MDVE(object1, object2). To m o v e  either object1 

o r  object2, a n  external agent may be required. T h u s ,  the second 

program performs a different task f r o m  that of the first program. 

3.2.3.3 G n t r o l  Structures 

Control structures in programs c a n  be sequential or parallel 

or non-deterministic. 

( a )  S e a u e n t i a l  

In a s-equential m e t h o d ,  the p r o g r a m  itself explicitly m a k e s  

the choice o f  w h a t  to d o  next. 

(b) P a r a l l e l  

In a parallel m e t h o d ,  m a n y  subprograms c a n  operate 



7 5  

simultaneously a n d  programs themselves are responsible f o r  

synchronizat-ion mechanisms. 

. .  ( c )  N o n  - D e t e m n i s t i c  

I n  a non-deterministic method, each program, when operating, 

will have the same environment, and many branches will be 

followed during execution. 

3.2.3.4 A d v a n t a P e S  & D i s a d v a n t a u  

S e e  Sect ion 3.1.7, ”Procedural vs. Declarative 

Representation” 

3.2.4 P r e d i c a t e  Calculus 

3.2.4.1 Introduction 

T h e  predicate calculus is a formal notation system (i.e., 

formal language) that c a n  be used to represent knowledge in A I  

systems. 

In the next section, a predicate calculus definition is 

presented. In Section 3.2.4.4, a n  example to illustrate the 

concepts is presented and in S e c t i o n  3.2.4.6, the advantages and 

disadvantages of using predicate calculus to represent knowledge 

in AI systems will be discussed. T h e  definition and discussion 

of the predicate calculus are based on a n  excellent book by 

N i l s s o n  [Nilsson, 7 1 1 ,  and [Barnett & Bernstein, 771 ( p .  76-88). 
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. . .  
3.2.4.2 Pr e d i c a t e  Calculus D e f l n l t i u  

T h e r e  are three parts to the definition of PC. 

(a) Syntax specification - the gramnar that defines legal 

expressions in the language. 

( b )  Semantic specification - the rules that relate the 

symbols in the language to objects in the domain. 

(c) Legal operations - rules of inference that create 

legal expressions f r o m  other legal expressions. 

T h e  syntactically legal expressions in the predicate 

calculus are called W e l l - F o r m e d  Formulae” (WFF). Th r o u g h  the 

semantic specification rules, a WFF m a k e s  a n  assertion about the 

domain. The WFF are said to have the value T or F, depending on 

w h e t h e r  the assertions are true o r  false on the domain. T h e  

legal operations are constrained in such a w a y  that the value (T 

o r  F )  of a WFF output by a transformation can be directly 

determined f r o m  the values of the WFFs input to the 

t r a n  s format i on. 

The syntax specification of the first-order predicate 

calculus (higher orders will be discussed later) has two parts: 
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( 1 )  T h e  specification of a n  alphabet o f  symbols. 

(2) The m e t h o d  by w h i c h  legal expressions are constructed 

f r o m  these symbols. 

T h e  alphabet consists of the following set o f  symbols: 

( 1 )  Punctuation marks: , 0 

( 2 )  Logical symbols: - = >  v 

( 3 )  Quantifier symbols: V 3 (The symbol Y, is called the 

universal m a n t i f i e r  and is read farall; the s y m b o l 3  . .  

. .  is called the existential m i e r  and i s  read a s  

n 
( 4 )  n-adic function letters: f ( i )  ( i  1,  n ’=  0 )  

0 
(The f ( i )  are called constant letters. 

n 
( 5 )  n-adic predicate letters: p ( i )  ( i  > =  1 ,  n ’ =  0 )  

0 
(The p ( i )  are called proposition letters.) 

(6) Variables: x(i) 

From these symbols, the definition of a WFF c a n  b e  

recursively expressed: 

1. T e r m s  

a. E a c h  constant letter i s  a term. 

b. E a c h  variable letter is a term. 



7 8  

n 
c .  If f (i) is a function letter and t(1) t(2) .. 

n 
t(n) (n > =  1) are terms, then f ( i )  (t(l), t(2), . .  

. .  t(n)) is a term. 

d. No other expressions are terms. 

2. Atomic formulae ( Doma i n- s p e c i f i c Boolean-valued 

expressions) 

a. The propositional letters are atomic formulae. 
n 

b. If t(1) t(2) . .  t(n) (n 1) are terms and p ( i )  

is a predicate letter, the expression 

p (i) (t(I), t(2) . .  t(n)) i s  an atomic formula. 
n 

c .  No other expression is an atomic formula. 

3 .  WFFs 

a. An atomic formula is a WFF. 

b .  If A and B are WFFs, then so are 

i ( - A )  (Read as not A )  

i i  ( A  5 )  B) (Read as A implies B) 

i i i  (A V B) (Read A or B (or both)) 

iv ( A  B) (Read as A and B) 

c .  If A is a WFF and x is a variable, then the 

following are WFFs: 

i (V x)A (Read as for all x, A) 

i i  (3 x ) A  (Read as, there exists x such that A) 

d. No other expressions are WFF. 
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T h e  parentheses shown in 3 b  and 3c are usually omitted where 

n o  c o n f u s i o n  will result. Some of WFFs, using abbreviated 

notation, are: 

S o m e  examples o f  expressions that are not WFFs are: 

(b) S e m a n t i c s  

T h e  semantic specification rules f o r  the predicate calculus 

give a ”meaning” to the WFFs by m a k i n g  a correspondance between 

symbols in the calculus and objects in the domain. T h e  domain, 

D, is a nonempty s e t  of objects. T h e  n e c e s s a r y  correspondances 

are [Barnett & Bernstein, 7 7 1 :  

( 1 )  A s s o c i a t e d  with every constant symbol in the WFF is 

some particular element of D. 

( 2 )  Associated with every function letter in the WFF is  a n  

n-adic function over (and into) D. 

.. 

( 3 )  Associated with every predicate letter in the WFF is 
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some particular n-place relation among the elements of 

D-. ( A  relation may be considered a s  a f u n c t i o n  w h o s e  

only values are T and F.) 

T h e  specification of domain and the above semantic 

associations constitute a n  interpretation or  a m o d e l  of the WFFs. 

G i v e n  a WFF and a n  interpretation, w e  c a n  assign a value, T or F .  

to e a c h  atomic formula in the WFF. These values c a n  be used in 

turn t o  a s s i g n  a value, T or F, to the entire WFF. T h e  process 

by w h i c h  a value is assigned to a n  atomic formula is 

straightforward: If the terms of the predicate letter correspond 

to elements of D that satisfy the associated relation, the value 

of the atomic formula is T; otherwise, the value i s  F. For  

example, consider the atomic formula: 

P(a, f(b,c)) 

a n d  the interpretation 

D is the set of integers 

a is the integer 2 

b is the integer 4 

c is the integer 6 

f is the (two-argument) addition function 

P is the relation greater-than 

With this interpretation, the above atomic formula asserts 
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that "2 i s  g r e a t e r  than the s u m  of 4 and 6". In this case, the 

assertion is- f a l s e  and P(a, f(b,c)) has the value F. If the 

interpretation is changed so that a i s  the integer 1 1 ,  then the 

value i s  T. 
. .  

T h e  m e t h o d  of assigning a value to a n  atomic formula 

containing variables is not so simple. F o r  example, the atomic 

formula: 

(Vx) P(f(x,a), X I  

with the interpretation 

D is the set of integers 

a is the integer 1 

f i s  the (two-argument) addition function 

P i s  the relation greater-than 

m a k e s  the assertion, "for all x in D (x any integer), x plus one 

i s  g r e a t e r  t h a n  x". H e n c e ,  the atomic formula h a s  a value only 

under the "influence" of the quantifier. W h e n  m o r e  than one 

quantifier i s  used, t h e n the o p e r a t i o n  o f  e a c h  m a y  depend upon 

those further to the left. Let the interpretation be 

D is the set of integers 

P is th-e relation greater-than 

Then, the WFF, 
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asserts that for all x (integer) there exists a y (integer), 

w h i c h  may _depend upon the chosen x ,  such that y is greater than 

x. T h e  value of this WFF is T. Ho w e v e r ,  the WFF 
.. 

asserts that there exists a y (integer) such that y i s  greater 

than any (integer) x. T h e  value of this WFF i s  F. 

The values of WFFs composed using logical symbols are 

derived by a set of rules that are independent of the 

interpretation. If X i s  any WFF, then (-XI has the value T w h e n  

X has the value F, and (-XI has the value F w h e n  X has the value 

T. T a b l e  3-2 shows h o w  the values of WFFs composed by the other 

logical connectives are determined from the values of the WFFs 

X(1) and X(2). 

G i v e n  these definitions of the logical and quantifier 

symbols, i t  i s  easy to s h o w  that the symbols V, A , and 3 are 

redundant because they c a n  be expressed in terms of the symbols 

- ,  = >  and 
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T a b i e  3-2. DEFINITION OF THE LOGICAL CONNECTIVES 
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. . .  3 . 2 . 4 . 3  Deflnltioru 

Several terms are used to describe properties of WFFs and 

the calculus itself: 

Yalid. A W F F  that has the value of T for all interpretations is 

called valid. 

Decidable. A calculus i s  called decidable if there exists a 

general method for determining, for any WFF in that calculus, 

whether i t  is valid. 

ecidable. If a calculus is not decidable, then i t  is 

undecidable. 

Satisfx. If the same interpretation makes each WFF in a set of 

WFFs have the value T, then this interpretation is said to 

satisfy the set o f  WFFs. 

Unsatisfiable. If no interpretation exists such that each WFF 

simultaneously has the value T. then t h e  s e t  of WFFs is  said to 

be unsatisfiable. 

Prove. To prove W given S means to show that W logically follows 

from S. 

ProDositiond Calculus. If the use of quantifiers and variables 

is prohibited, the result is called the propositional calculus, a 

decidable subset of the first-order predicate calculus. 

. .  
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S e c o n d  - o r d m h l c u l u s .  A second-order predicate calculus comes 

about by allowing quantification of propositional letters in 

addition to the quantifications allowed in the first-order 

theory. 

. .  

- er CalcuLyS. T h e  second-order calculus c a n  be extended 

by allowing quantification of the higher-order predicate letters. 

S u c h  a calculus is called omega ordered predicate calculus. 

T h e  predicate calculus provides a natural w a y  of expressing 

declarative knowledge. A knowledge source i s  a collection of 

WFFs and the semantic rules that relate t h e m  to the domain of 

application. T h e  included WFFs all have the value T and a r e  

called axioms. T h e  semantic rules are usually straightforward 

and implicit, i.e., the abbreviated names used for the f(i) and 

p(i) are c h o s e n  in such a w a y  that the correspondance to the 

d o m a i n  i s  intuitive. 

3 . 2 . 4 . 4  &- 

T h e  following example illustrates m a n y  of the concepts 

involved in predicate calculus. This example (Figure 3-7) i s  

taken f r o m  [Klahr, 7 8 1 .  T h e r e  are four axioms: 

( 1 )  J a c k  i s  the husband of J i l l .  

( 2 )  J i l l  lives in Boston. 

( 3 )  If xl is the husband of x2, then xl and x 2  are married. 

( 4 )  A m a r r i e d  couple lives in the s a m e  place. 
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LIVES. IN( x3, x5 ) 

HUSBAND(Jack,Jill) 
I 
I u1 
V 

HUSBAND(xl,x2)=>MARRIED(xl,x2) 
I 
I u2 
V 

LIVES.IN(Jill,Boston) 
/ 

/ 

/ u3 
/ 

/ 
/ 
V 

/ 
u4 / 

V 
LIVES.IN(Jack,Boston) 

u1 u2 u4 

u1 u2 
J i l l - - > x 2 - - > x 4  

Variable chains: Jack--,xl--,x3-->Jack 

u3 u4 
Boston-->xS-->Boston 

Theorem: LIVES.IN(Jack,Boston) 

Figure 3-7. Proof that J a c k  Lives in Boston 
[Barnett & Bernstein, 771 
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T h e  assertion derived is "Jack lives in Boston". T h e  proof 

is s h o w n  schematically with the reasoning chain depicted by the 

single arrows. Thus, the proof consists of the above axioms as 

steps(1) through ( 4 )  followed by: 

( 5 )  J a c k  is m a r r i e d  to J i l l  - because of ( 1 )  and ( 3 ) .  

( 6 )  J a c k  lives in Boston - because of (21, ( 4 1 ,  and ( 5 ) .  

When passing along the arrows, a n  association i s  established 

between the variables and/or the terms on each side of the arrow. 

For example, along the a r r o w  labeled U1, xl, and x 2  are 

respectively associated with Jack and J i l l ,  and along the a r r o w  

labeled U2, xl, and x 2  are respectively associated with x 3  and 

x4. E a c h  such association i s  called a unification. T h e  set o f  

all s u c h  unifications are sumnarized, under the heading "Variable 

chains", at the bottom of the Figure 3-7 T h e r e  are three chains 

in the example: (Jack xl x 3 ) .  ( J i l l  x 2 x 4 ) ,  and ( B o s t o n  x5). 

T h e  chains are formed a s  equivalence classes of terms and 

variables so that each variable is i n  one and only one  chain, no 

variable in one c h a i n  unifies with a variable in another chain, 

if the chain contains m o r e  than one element then each element 

unifies with at least one other element in the chain, and the 

n u m b e r  of c h a i n s  is maximal. 

In order to prove a n  assertion three rules m u s t  be followed: 

( 1 )  A t  m o s t  one t e r m  c a n  occur in a n  equivalence class - 

all variables in the class then have this value. 
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( 2 )  If no terms occur in a class, t h e n  there must exist a n  

o-bject in the domain such that all variables in the 

c h a i n  m a y  legally assume that value. 

( 3 )  E i t h e r  rule ( 1 )  o r  ( 2 )  must apply simultaneously to 

every chain. 

T h e  example shows a m e t h o d  of determining a value (in this 

case T) of the assertion, "Jack lives in Boston." T h i s  raises 

t h e  natural q u e s t i o n  of h o w  to deal w i t h  the problem, "Where does 

J a c k  live?" T h e  method described in [Nilsson, 7 1 1  for solving 

this k i n d  o f  p r o b l e m  i s  based o n  the resolution technique for 

generating proofs in the first-order predicate calculus. T h e  

m e t h o d  consists o f  two parts: 

( 1 )  U s e  resolution to generate a proof for a related 

p r o b l e m  - for example, (tfx) LIVES.AT(Jack,x); and 

( 2 )  U s e  the generated proof to find a n  appropriate answer 

to the problem - in this case, x = Boston. 

3 . 2 . 4 . 5  m r a c t e r i s t  ics Q€ P r e d i c a t e  Calculus 

One o f  the features of the predicate calculus is the ability 

to derive n e w  facts and beliefs using some existing WFFs. T h i s  

is a good idea, but i t  falls short as a m e a n s  o f  representing 

knowledge in KBSs and other AI applications. O n e  of the 

difficulties is that i t  i s  not enough simply to h a v e  the "facts 
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at hand"; one m u s t  k n o w  h o w  to use them. Consider f o r  example, 

the inference rule OR-introduction 

A = ) A V B  

OR-introduction captures the idea that we can infer "A or B" 

either by proving A or by proving B. G i v e n  constants D, E, and 

F, we a n  use this rule to infer 

D V E  

D V F  

as w e l l  as w o n d e r s  as 

D V D  

D V E V E  

D V E V D V E  

D V E V E V E V E V E  

and so o n  w i t h o u t  limit. 

This example (based on [Hayes-Roth, et a l ,  8 3 1 )  shows that 

the unguided application of inference rules c a n  be explosive. 

T h e  inferences are perfectly correct; they are just not 

particularly interesting. And this contributes to w h a t  i s  called 

combinatorial explosion in large search problems (see Section 

3.3.4). 

M u c h  w o r k  has been directed toward controlling combinatorial 

explosion. For example, some mechanical theorem-proving 

techniques avoid nonsense applications of OR-introduction. 

M e t h o d s  that use m a n y  rules of inference need to incorporate 

knowledge to control their use [Hayes-Roth, et al, 8 3 1 .  Some 
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alternative but equally troublesome m e t h o d s  are suggested (see 

[Nilsson, 8 0 1 )  for example, resolution and resolution strategies. 

A n o t h e r  characteristic of predicate calculus representations ' '  

is demonstrated by example of Figure 3-7 namely, there are two 

broad categories of axioms [Barnett & Bernstein, 771: 

(1 )  F i r s t ,  there are specific facts such as "Jack i s  

J i l l ' s  husband" o r  " J i l l  lives in Boston". 

( 2 )  Second, there are general assertions such as "Married 

couples live at the same place." In any actual 

application domain, the number o f  facts will be 

overwhelming. The result is impractically s l o w  proof 

procedures or the use of different m e t h o d s ,  in the 

inference engine, to handle facts and general 

knowledge. M o r e  detailed discussion o n  this problem 

c a n  be found in [Kalhr, 7 8 1 .  

3.2.4.6 A d v a n t u  aaB Disadvant- nf P r e d i c a t e  Calculus 

Advantages: 

( 1 )  Predicate calculi are the best theoretically 

understood and among the oldest techniques used f o r  

representing knowledge in a computer. 

(2) Predicate calculus is m o d u l a r  and reversible. 
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Disadvantages: 

( 1 )  Representing procedural knowledge in the predicate 

calculus i s  difficult. 

( 2 )  In predicate calculus, the entire set o f  axioms must 

be consistent. Thus, i t  m a k e s  i t  impossible to 

include heuristic and possibly contradictory rules o f  

thumb and other sorts o f  expert knowledge in the 

knowledge base. 

3.2.4.7 s m  D a t  P r e d i c a t e  Calculus. 

Som e  systems that use predicate calculus languages to 

represent knowledge: 

- QA3 [Green, 691. a general-purpose, question-answering 

s y s t e m  that solved simple problems in a number o f  

domains. 

- STRIPS, the Stanford Research Institute P r o b l e m  

Solver, is designed to solve planning problems faced 

by a r o b o t  in rearranging objects and navigating in a 

cluttered environment [Fikes, 721. 

- FOL [Filman & W e y h r a u c h ,  761 i s  a very flexible proof 

checker f o r  proofs stated in first-order predicate 

calculus. 
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3.2.5.1 I p t r o d u c t  i o n  

M a n y  of t h e  highly successful KBSs use production rules as 

the representation of knowledge in a knowledge base. 

A p L p d u c t i o g  r u l e  is a specification of conditional action 

and consists of a left hand side (LHS) (also called condition or 

antecedent), w h i c h  describes a situation, and a right hand side 

(RHS) (also called action or consequence), which describes 

something that m a y  legally be done in a situation described by 

the LHS [Barnett & Bernstein, 7 7 3 .  

For  example, in "If you a r e  outdoors and it is raining, then 

o p e n  umbrella", the conditions are ( 1 )  being outdoors, and ( 2 )  

rain. T h e  a c t i o n  is to open an umbrella. 

3 . 2 . 5 . 2  P r o d u c t  i o n  Svstem TvDes 

There a r e  ( a t  least) three types of application areas w h e r e  

p roduction rules are used as a knowledge representation m e c h a n i s m  

[Davis & K i n g ,  7 7 1 .  

( a )  & y c h o l o P i c a l  W d e l i r l g  

T h e  attempts to simulate (or mimick) human performance 

(behavior) on simple tasks are aimed at c r e a t i o n  of programs 

w h i c h  embody a theory for that behavior. Using a minimum set of 

competent production rules, some psychological modeling 
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experiments (EPAM, [Barr & Feigenbaum, 8 1 1 ,  f o r  example) w e r e  

able to reproduce the behavior. H e r e  the "behavior" i s  meant to 

include all aspects of human shortcomings or successes w h i c h  may 

arise out of (and hence m a y  be clues to) the "architecture" of 

the human cognitive system [Davis & K i n g ,  7 7 1 .  Some of these 

shortcomings like oscillation and forgetting may b e  considered as 

"mistakes" for a s y s t e m  intended f o r  h i g h  performance, but are 

important in a s y s t e m m e a n t  to m o d e l  human learning behavior 

[Feigenbaum, 6 3 1 .  

A s y s t e m  w i t h  the above described behavior is described in 

[Newell & S i m o n ,  721. 

In some formal language theories, production rules have been 

used t o  w r i t e  gramnars for formal languages [Floyd, 6 1 1 ,  [Evans, 

641. T h e  important characteristic of these theories is that they 

use non-determinism f o r  control structure and rule selection. 

T h e s e  s y s t e m s  use production rules as a representation of 

knowledge about a task or domain and attempt to build a program 

w h i c h  displays competent behavior in that domain. In these 

( e x p e r t )  systems, there i s  n o  explicit attempt to "simulate" a 

specialist's p r o b l e m  solving behavior; however, the s y s t e m  

derives power f r o m  integrating the same heuristic knowledge 
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experts use, with the s a m e  informal style of reasoning [Buchanan 

& Duda, 8 3 1 . -  

. .  T h e  example and the rest of the discussion in this section 

i s  oriented towards this category. 

3.2.5.3 P r o d u c t  i o n  Svstem ComDonents 

A production system consists of three parts [Barr & 

Feigenbaum, 811: 

(a) A rule base - a collection of production rules. 

(b) A w o r k s p a c e  - a buffer like data structure. 

( c )  An interpreter or control m e c h a n i s m  - w h i c h  controls 

the s y s t e m  activity. 

( a )  P r o d u c t  iQn l h b x L  

P r o d u c t i o n  rules are represented by some agreed upon syntax. 

A set of primitives and symbols (that correspond to objects and 

functions in the domain) are used to construct LHS and RHS of 

production rules. 

W o r k s p a c e  (sometimes called context, or data base o r  short 

t e r m m e m o r y  ( S ' I M )  buffer) is the focus of attention of production 

rules. I t  contains the total description of the system's current 

state or situation. The LHS of a rule is m a t c h e d  against the 

contents of the workspace. If there i s  a m a t c h ,  then RHS i s  
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executed ("fired") and RHS action modifies the workspace. Then a 

production rule is said to be u ~ l i e d .  

( c )  I p t e r o r e t e r  (or control mechanism) 

In a production system, the interpreter has three tasks: 

( 1 )  M a t c h  i n g  or building a lCPnflict - Set - the set of all 

production rules w h o s e  LHSs are satisfied. If the 

conflict set is empty, then processing i s  terminated. 

(2) Cnaflict - R e s o l u t i o n  - if the conflict set is not 

empty, then one m e m b e r  o f  the conflict set is 

se lec ted. 

(3) A c t i o n  PT E x e c u t i o n  - the RHS of  the above selected 

production rule is executed. 

T h e  entire cycle i s  repeated until the termination condition 

i s  reached. 

3.2.5.4 W l i c t  &solution Strate- 

Several conflict resolution strategies have been used o r  

proposed. A m o n g  them are [Barnett & Bernstein, 771: 

(a) m o r d e r :  T h e r e  is a complete ordering of all 

production rules. T h e  rule in the conflict s e t  that 

i s  highest in ordering is chosen. 

(b) Rule-: A precedence network determines a n  

ordering . 
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(c) -a1 itv Qrder: T h e  m o s t  specific rule i s  chosen. 

( d ) D a t a o r d e r :  Elements o f  the workspace are ordered. 

T h e  rule chosen i s  the one w h o s e  LHS references the .' 

highest-ranking workspace element(s). 

(e) l k g e n c y o r d e r :  Execute the rule in the conflict set 

that w a s  m o s t  (least) recently executed, o r  the rule 

in the conflict set w h o s e  LHS references the most 

(least) recently referenced element(s1. 

. .  ( f )  - : Execute every rule in the conflict 

set as if i t  w e r e  the only m e m b e r .  Computation stops 

w h e n  any path terminates. 

3 . 2 . 5 . 5  -1 

Th e  following example (a slight m o d i f i c a t i o n  of [Barr & 

F e i g e n b a u m ,  8 1 1  page 1911 illustrates some o f  the basics of 

production system. 

Consider a production system (PS) that might be used to 

identify a food item, given a f e w  hints. by a p r o c e s s  similar to 

that used in the game T w e n t y  Questions. T h e  workspace ( o r  

context) coniains a simple list of symbols, called "context l i s t "  

(CL). "On-CL X" m e a n s  that the symbol X is currently in the 

context. F i g u r e  3-8 shows the rule base and the interpreter f o r  

our example production system. 
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PROWCTTIONS: 

P1. IF ON-CL green THEN Put-On-CL produce 
P2. IF On-CL packed in small container T" Put-On-CL delicacy 
P3. IF On-CL refrigerated OR On-CL produce THEN Put-On-CL 

P4. IF On-CL weighs 15 lbs AND On-CL inexpensive AND NOT On- 

P5. IF On-CL perishable AND On-CL weighs 15 lbs THEN Put-On- 

P6. IF On-CL weighs 15 lbs AND On-CL produce THEN Put-On-CL 

perishable 

CL perishable THEN Put-On-CL staple 

CL t u r k e y  

wa t e m e  1 on 

INTERPRETER : 

1 .  Find all productions whose condition parts are TRUE and make 
them applicable. 

2. If more than one production is applicable, then deactivate any 
production whose action adds a duplicate symbol to the  CL. 

3. Execute the action of the lowest numbered ( o r  only) applicable 
production. If no productions are applicable, then quit. 

4 .  Reset the applicability o f  all productions and return to S 1 .  

Figure 3 - 8 .  Productions and Interpreter 
[Barr & Feigenbaum, 8 1 1  
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The condition part of each of the productions corresponds to 

a q u e s t i o n _ -  one m i g h t  ask in the Twenty Questions game. Is the 

item green? Does i t  come in small container? and so on. The 

action parts of the productions represent addition to our 

knowledge about the unknown item. 

- .  

S u p p o s e  the original knowledge about the m y s t e r y  food item 

is that i t  is green and weighs 15 l b s .  The context l i s t  before 

the beginning of the first cycle i s  

CL = (green, weighs 15 lbs.) 

T h e  cycle starts with stepl of the interpreter algorithm, 

finding all the applicable productions by testing their condition 

parts. S i n c e  only P1 i s  applicable, step2 i s  not necessary, and 

step3 causes the action part of P1 to be executed. This adds the 

symbol -produce" to the context list, representing a n e w  fact 

about the unknown food item: 

CL = (produce, green, w e i g h s  15 lbs.) 

S t e p 4  ends the first cycle and b r i n g s  us back to stepl - 

findin'g all the applicable productions. 

In the second cycle, productions Pl, P 3 ,  and P5 are all 

applicable. So in step2, w e  must c h e c k  if any of these three 

adds a duplicate symbol to the context l i s t .  P1 adds "produce", 

which is a duplication, so i t  i s  eliminated. Then in step3 w e  

select P3 to be executed because i t  has a lower number than P6. 

Now the CL looks like 



9 9  

CL = (perishable, produce, green, w e i g h s  15 lbs.) 

In the third cycle, P1, P3, and P5 are applicable. 

Checking, in step3, for redundant entries, w e  eliminate P1 and P3 . .  

f r o m  consideration. In step3, P5 i s  executed and watermelon is 

added to the context. T h e  resulting CL is 

CL = (watermelon, perishable, produce, green, w e i g h s  15 lbs.) 

In the last cycle, finding no non-redundant productions to 

execute, the interpreter finally quits. T h e  system's answer is 

w a t e r m e l o n ,  because i t  is the first symbol on the context list. 

3.2.5.6 -2 

T h e  next example is a PS that assists the service 

representative and mechanics in a n  automobile repair agency (see 

S e c t i o n  2.2, "A Hypothetical KBS"). T h e  example is based on 

[Barnett & Bernstein, 7 7 1 .  

A customer comes to the agency and r e p o r t s  the problems (and 

symptoms) t o  the Service Representative (SR). T h e  SR enters the 

data into the system. T h e  s y s t e m  diagnoses the problem(s) and 

suggests appropriate tests and repairs. T h e  m e c h a n i c  corrects 

the problem. 
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T h e  system, as w a s  mentioned in Section 2.2, contains 

( 1 )  k n o w l e d g e  base of production rules that describe 

cause-and-effect relationships among the performance 

characteristics and measurable attributes of a n  

automobile. 

( 2 )  A data base of past problems, repairs, and service 

performed on the vehicle. 

Figure 3-9 shows a sample of production rules for the 

s y s t em. 

RHS of e a c h  production rule has a condition, followed by 

decimal n u m b e r  w h i c h  represents the certainty or probability of 

the c o n d i t i o n  (see S e c t i o n  3.1.6, "Credibility Factors"). Thus, 

rule R1 says that, if the tension of the fan belt is low, then 

there are two possible consequences: 

( 1 )  T h a t  about one-half of the time the output of the 

a l t e r n a t o r  will b e  l ow.  

( 2 )  A b o u t  one-fifth of the time the engine will overheat. 

T h e  other rules, R2 - R9, are interpreted in a similar 

m a n n e r .  
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R1 

R 2  

R 3  

R 4  

R 5  

R6 

R 7  

R8 

R 9  

I F  f a n  belt tension is l o w  
alternator output will b e  l o w  [ . S I  and engine will 
overheat 1 - 2 1  

I F  alternator output i s  low 
THEN battery charge will be l o w  1 . 7 1  

I F  battery is l o w  
THEN car will be difficult to start [ . S I  

I F  automatic choke malfunctions OR automatic choke 

THEN car will be difficult to start 1 - 8 1  
needs adjustment 

I F  battery i s  out of w a r ranty 
THEN battery charge m a y  be l o w  [ . 9 ]  

I F  coolant i s  lost OR coolant s y s t e m  pressure cannot be 

THEN engine will overheat [ . 7 ]  
maintained 

I F  there is a h i g h  resistance short AND fuse is not 

THEN battery charge will be l o w  [ . 8 ]  
b l o w n  

I F  battery fluid is l o w  
THEN battery will boil off fluid l . 3 1  

I F  battery fluid i s  l o w  
THEN battery charge will be low 1 .41  

Figure 3 - 9 .  PRODUCI'ION RULES FOR A-IVE SYSTEMICS 
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Figure 3-10 shows a fact file, a collection of "hard data". 

T h e  i n f o q t i o n  included f o r  each measure or observation i s  the 

agent f r o m w h o m  to gather data and the relative difficulty (or 

cost) o f  gathering the data. T h e r e  are four possible agents for 

gathering: 

( 1 )  T h e  customer (Cust). 

( 2 )  T h e  d a t a  base. 

( 3 )  Inspection by the service representative (SrvR). 

( 4 )  M e a s u r e m e n t  by the mechanic (Mech). 

T h e  d i f f i c u l t y  information will be combined with the CFs in 

the p r o d u c t i o n  rules to formulate the most cost-effective and 

timely p l a n  for the needed diagnostics and repairs. 

Now assume that a customer comes to the agency with a vague 

complaint that h i s  car is hard to start. T h e  service 

representative enters this information, including appropriate 

customer a n d  vehicle identification. T h e  s y s t e m  then g r o w s  a 

structure similar to that shown in Figure 3-11. T h e  boxes are 

labeled with observable or measurable symptoms and are connected 

by arrows labeled with the names o f  the production rule they 

represent. To the far right o f  each of the unknown value (e.g., 

the box labels, such a s  battery fluid level), the associated 

agent and relative difficulty are listed. 
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OBSERVATIONS 

Alternate Output Level 

Battery Charge Level 

Battery Fluid Level 

Choke Adjustment 

Choke Function 

Cool ant Leve 1 

Coolant System Pressure 

Difficulty to Start 

Engine Temperature 

Fan Belt Tension 

Fuse Condition 

Short in E l e c t r i c  System 

Voltage Regulator Level 

W a  r r ant j e s 

AGENT 

Mech 

Mech 

SrvR 

Mech 

Mech 

SrvR 

Mech 

Cust 

Cust 

Mech 

SrvR 

Mech 

Mech 

D a t a  Base 

DIFFICULTY 

4 

3 

2 

5 

5 

2 

5 

1 

1 

3 

2 

8 

4 

0 

Figure 3-10. DATA GATHERING PROCEDURE FACI' FILE 
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At this point, the s y s t e m  w o u l d  check the data base for 

information_-about the battery's warranty. I f  nothing decisive 

w a s  found, then the customer w o u l d  b e  asked w h e t h e r  the car w a s  

running hot, and the service manager w o u l d  continue to m a k e  

on-the-spot observations. Diagnostic procedures will then be 

placed on a n  ordered schedule for the mechanic. The ordering 

w o u l d  be based upon : 

( 1 )  C o s t  effectiveness - a function of test difficulties, 

estimated probability of being necessary, and ability 

to eliminate other tests. 

(2) Availability of resources - specialty mechanics and 

t e s t  equipment. 

T h e  structure shown in Figure 3-11 w a s  g r o w n  by a n  algorithm 

called "back-chaining". A condition - in this case, "difficult 

to start" - i s  t aken as a given, and the goal of the system i s  to 

f i n d  the cause(s). 

T h e  back-chaining a l g o r i t h m  i s  

'(1) F i n d  all rules that have the initial or derived 

c-onditions as their consequence (in our example, Rule 

R3 and R4). 

( 2 )  C a l l  LHS (antecedents) of these rules - "derived 

conditions". 

(3) Repeat steps ( 1 )  and ( 2 1 ,  and terminate w h e n  no m o r e  

c a n  be done. 
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w MALFUNCTION 

DIFFICULT 
TO START 

I I 

FUSES NOT u 
& I :  I f 

CHARGE u3w 
B A l T E R Y O U T  
OF WARRANTY 

I I  1 L 

VOLTAGE 
REGUUTOR 

OUTPUT HIGH 

I I 

L 1 LOW FAN I 
BELT TENSION 

I 
HIGH ENGINE 
TEMPERATURE 

FIGURE 3,11 PI F FLO W I N  AUTO DIAGNOSIJC S Y STFbl 

AGENTS 

FlECH (5). 

MECH(5) 

SRVR(2) 

DB(O) . 

MECH (4) 

CUST(1) 
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Figure 3-12 shows the kind of structure grown f o r  each kind 

of rule formht. In each example in the figure, C1 is the initial 

or a derived condition. 

Rule El i s  the simplest; a1 i s  added to the s e t  of derived 

conditions. Rule E2 states that if a1 is the case, then both C1 

and C2 ought to follow. Thus, a1 i s  a derived condition, and C2 

may or mag not be considered a derived condition depending upon 

the particular strategy used by the system. 

Rule E 3  can b e  written as two rules: "IF a1 THEN cl" and 

"IF a1 THEN c2". Therefore, a 1  i s  added to the set of derived 

conditions, and c 2  part i s  ignored. 

Rule E4 states that both a1 and a 2  m u s t  occur to support the 

conclusion, c l .  T h e r e f o r e ,  both are derived conditions. If 

either a1 or a 2  i s  found to not hold, then t h e  search for support 

for the other c a n  be discontinued. 

Rule E5 i s  equivalent to the separate rules "IF a1 THEN cl" 

and "IF a 2  THEN c2". T h u s ,  both a1 and a 2  are added to the s e t  

of derived conditions. 

The example and the discussion i s  somewhat simplistic 

because there m i g h t  be some problems w h i c h  w e  did not consider. 

For example-, suppose that rule R8 ( i n  Figure 3-9) had been 

w r i t t e n  m o r e  accurately as the two rules: 
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_ -  E l  IF A 1  THEN C? 

E2 IF A 1  THEN C1 AND C2 

E3 I F  A 1  THEN C1 OR C2 

E4 IF A 1  AND A2 THEN C1 

E5 IF A 1  OR A2 THEII C1 



108 

R8(1) IF voltage regulator output is high 

THEN the battery will overcharge. 

R8(2) IF battery is overcharged 

THEN battery will boil off fluid. 

With these new rules, a fragment of the structure shown in 

Figure 3-11 would be replaced by that shown in Figure 3-13. Now 

the interesting conclusion is that a high battery charge implies 

a low battery charge. This is an apparent contradiction, since 

both conditions cannot hold at the same time. This kind of 

situation can often arise in unpredicted ways if the system 

contains many rules. The charge of the battery will oscillate 

between high and low as the battery fluid is replaced and boils 

off, respectively. 

S o ,  in a sense, there is a missing rule of the form that 

adding fluid to a battery whose charge and fluid levels are low 

will probably allow the battery to return to normal conditions. 

However, to handle this kind o f  situation in general, i t  is 

necessary that the control mechanism or inference engine have 

some knowledge about how to proceed when faced with apparent 

conflicts and contradictions. One advantage of PS is that ad hoc 

knowledge may be relatively easily incorporated in the system to 

hand 1 e thi s . 



109 

BAm 
CHARGE 

Low I-" 
fQ R9 9 

BATTERY BAm VOCTAGE 

UXJ HIGH HIGH 
(2) , FLU ID CHARGE REG, WTPUT 

A L 

FIGURE 3-u, FRAGMENT OF GRAPH STRUCTURF 



110 

T h i s  section discussed some of the k e y  features and 

characteristics of the production systems. T h e  discussion is 

based o n  [Davis & K i n g ,  771 and [Barnett & Bernstein, 771. 

.. 

Figure 3-14 is a sumnary of characteristics and 

relationships. E a c h  box represents some feature, capability, or 

parameter of interest. An a r r o w  labeled w i t h  "+" means that the 

source characteristic enhances the destination characteristic; 

the opposite is true for arrows labeled with a "-". 

In a production system, individual productions in the rule 

base c a n  be added, deleted, or changed independently. Eacb 

production (or production rule) is a knowledge chunk. 

Indirect m t e d  I n t e r a c t i o n  Channel . .  ( b )  

O n e  o f  the most fundamental characteristics of a production 

s y s t e m  is that production rules must interact indirectly through 

a single channel (or workspace). Rules are constrained to see 

a n d  m o d i f y  o n l y  the workspace. T h e y  cannot "call" each other. 

T h u s ,  to pioduce a production s y s t e m w i t h  a specified behavior, 

one must use a n  indirect approach in w h i c h  each piece o f  code 

(i.e., e a c h  rule) leaves behind the proper traces ( a  unique 

m e s s a g e )  to trigger the next relevant piece. 
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The u n i f o r m  access to the channel, along with openness of 

production systems (i.e., any rule could possibly be the next to 

be selected), implies that those traces ( o r  m e s s a g e s )  must be 

constructed in the light of a potential response f r o m  any rule in 

the system. T h i s  becomes m o r e  difficult to do as the number of 

rules increases and is a method that quickly destroys the major 

benefits o f  using PSs, such as independence of the knowledge 

chunks. 

(c) C o n s t r a i n e d  Format 

T h e  syntax of production rules i s  traditionally q u i t e  

restrictive. T h i s  m e a n s  that: 

( 1 )  T h e  LHS should be a simple predicate built out of 

B o o l e a n  combination o f  computationally primitive 

operations. 

( 2 )  T h e  RHS should p e r f o r m  conceptually simple operations 

on the workspace. 

E v e n  though some systems a1 l o w  programner-supplied 

predicates a n d  procedures to be invoked by the rule’s LHS and 

RHS, some restrictions are obeyed [Davis & K i n g ,  771: 

( 1 )  As a predicate, the LHS of the rule should return only 

some * i n d i c a t i o n  of the success or failure o f  the 

m a t c h .  
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( 2 )  The operation of LHS must only "observe" the 

workspace, and not change it in the operation of 

testing it .  

( 3 )  T h e  operation of RHS i s  precluded f r o m  using m o r e  

complex control structures like iteration o r  recursion 

w i t h i n  the the expression itself (such operations can 

be constructed f r o m m u l t i p l e  rules, however). 

These constraints on f o r m  make the dissection and 

understanding of productions by other parts of the p r o gram a m o r e  

straightforward task, strongly enhancing the possibility of 

having the program itself read, and/or m o d i f y  i t s  own procedures. 

Expressability suffers, however, since the limited syntax may not 

be sufficiently powerful to m a k e  expressing each piece of 

knowledge a n  easy task. This in t u r n ,  both restricts 

extensibility (adding something i s  difficult if i t  i s  hard to 

express it), and makes modification of the system's behavior m o r e  

difficult. For example, i t  might not b e  p a r t i c u l a r l y  attractive 

to implement a desired iteration if i t  requires several rules 

rather than a line or two of code. 

. -  . .  ( d )  M a c h i =  Readabilitv 

Constrained format enhances machine readability and allows 

the s y s t e m  to examine i t s  o w n  rules. As one example, i t  becomes 

possible to implement automatic consistency checking. Another 

capability deals w i t h  the MYCIN's approach to examining i t s  



114  

rules. T h i s  is used in several w a y s  and produces both a m o r e  

efficient control structure and precise explanations of system 

behavior [Davis, 7 6 1 .  

( e )  b d u l a r i t v  

Since direct interaction among rules i s  constrained, i t  is 

possible to m o d i f y  rules, delete rules, and add n e w  rules as 

necessary because other rules are not directly dependent upon the 

rules that are changed o r  added. 

For systems using the goal-directed (e.g., MYCIN) approach, 

rule order is usually unimportant. Insertion of a n e w  rule is 

thus simple, and can often be totally automated. This i s  a 

distinct advantage where the rule set is large, and the problems 

of system complexity are significant. 

. . .  (f) b t e n s i b i l i t v  

Extensibility i s  a corrollary of modularity. T h e  ability to 

augment the s y s t e m  to p e r f o r m  in a n  e x p a n d e d  domain i s  obviously 

enhanced by the modularity and low interaction among the original 

rule s e t .  On the otherhand, as w a s  m e n t i o n e d  above under 

"Constrained Format", extensibility m a y  be h a m p e red because of 

format constraints i f  the expanded domain necessiates the use o f  

a m o r e  robust set of primitives. 
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rules. This i s  used in several w a y s  and produces both a more 

efficient control structure and precise explanations of system 

behavior [Davis, 761. 

( e )  M p d u l a r i t v  

Since direct interaction among rules i s  constrained, i t  is 

possible to m o d i f y  rules, delete rules, and add n e w  rules as 

necessary because other rules are n o t  directly dependent upon the 

rules that a r e  changed or added. 

For systems using the goal-directed ( e . g . ,  MYCIN) approach, 

rule order i s  usually unimportant. Insertion of a n e w  rule is 

thus simple, and can often be totally automated. This i s  a 

distinct advantage where the rule s e t  is large, and the problems 

of system complexity are significant. 

. . .  
( f )  Ea&nsibtlity 

Extensibility i s  a corrollary of modularity. The ability to 

augment t h e  system to p e r f o r m in a n  expanded domain is obviously 

enhanced by t h e  modularity and l o w  interaction among the original 

rule set. On the otherhand, as w a s  m e n t i o n e d  above under 

”Constrained Format”, extensibility m a y  be hampered because of 

format constraints if the expanded domain necessiates the use of 

a m o r e  robust set of primitives. 
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Visibility o f  behavior is the ease w i t h  w h i c h  the overall 

behavior o f  a production system c a n  be understood, either by 

observing the system, o r  by reviewing its rule base. E v e n  for 

conceptually simple tasks, the stepwise behavior of a production 

s y s t e m  is o f t e n  rather opaque. T h e  main factor responsible for 

this is the reevaluation of the workspace at every cycle. 

Because o f  these, a n y  attempt to "read" a production system 

requires keeping in m i n d  the entire contents o f  the workspace, 

a n d  scanning the entire rule set at every cycle. Another factor 

is the limit on rule-to-rule conmunication w h i c h  inhibits the 

s y s t e m  f r o m  focusing attention. 

.. 

One m e t h o d  o f  increasing goal directed behavior in a 

production s y s t e m  i s  the use o f  h i g h  level, strategic and 

tactical rules to guide the conflict resolution strategy [Davis, 

7 6 1 .  An interesting discussion relating to this section can be 

found in [Englemore & N i i ,  771. 

nf Wavier . .  . .  ( h )  M o d i f i a b i l i t v  

T h i s  is similar to extensibility. H o w e v e r ,  the issue is the 

ability to m o d i f y  the rules so that the s y s t e m  focuses attention 

better or m o r e  quickly. This i s  a i d e d  by m o d u l a r i t y  o f  the rule 

set and hindered by the problems that arise w h e n  explicit control 

a n d  sequencing are desired in a production system. 
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A production s y s t e m  can (and usually does) explain and 

validate its solutions to problems by displaying the rules i t  . '  

used t o  derive the solutions. Because the rules are o f  a 

situation/conclusion f o r m  and are of reasonable chunk size, all 

necessary contextual information c a n  be included in the rule 

itself. M o d u l a r i t y  o f  the rules a l s o  contributes to the 

acceptability of the explanation because each rule i s  reasonably 

well self-contained. 

Conflict resolution strategy has a n  effect on the ability to 

extend the s y s t e m  and/or m o d i f y  its behavior. A RHS s c a n  w i t h  

backward chaining seems to be the easiest to f o l l o w  since i t  

m i m i c s  part o f  human reasoning behavior, w h i l e  a LHS scan with a 

complex conflict resolution strategy m a k e s  the s y s t e m  generally 

m o r e  difficult to understand. As a result, predicting and 

controlling the effects o f  changes in o r  additions to, the rule 

base are directly influenced in either direction by the choice of 

rule selection method. 

If the rule set generates inconsistent results, the control 

m e c h a n i s m  mag fail. M a c h i n e  processing and simplicity of format 

h e l p  implement automatic consistency checking. 
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The best example of a KBS w h i c h  uses production systems f o r  

r e p r e s e n t i n g - k n o w l e d g e  is MYCIN. 

3.2.6 -t ic Networks 

3.2.6.1 I p t r o d u c t  i o n  

Semantic networks are used in many areas: psychological 

m o d e l i n g  o f  h u m a n  memory, programning languages, natural language 

understanding, data base management systems, etc. A n d  as such 

there is no simple set of unifying principles to apply across all 

semantic n e t w o r k  systems. 

This section presents some general characteristics of 

semantic networks and illustrates some basic concepts w i t h  a n  

example. 

. . .  3.2.6.2 D e f l n l t l o p  

A m n t  i c  u t w o r k  (or net) consists of nodes and links ( o r  

arcs) and i s  a m e t h o d  of representing declarative knowledge. T h e  

nodes represent entities or objects, concepts or situations in 

the d o m a i n  a n d  the arcs represent the relations between them. 

Semantic networks, because of their inherent generality and 

n a t u r a l n e s s ,  c a n  be used to represent highly interrelated 

information that cannot be properly represented by, for instance, 

standard d a t a  (base) management techniques. 
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3.2.6.3 -1 

Supposi w e  w a n t  to represent a simple sentence like "Clyde 

is a n  elephant" in a semantic network (example is taken f r o m  

[Barr & Feigenbaum, 8 1 1 ) .  W e  c a n  represent this by creating two 

n o d e s  C l y d e  and Elephant and connecting t h e m  with a link, as 

shown be 1 ow. 

- .  

T h i s  c a n  also be written as 

ISA(Clyde, Elephant) 

I t  m e a n s  that (Clyde, Elephant) i s  a m e m b e r  o f  the relation 

ISA. ISA (also k n o w n  as "IS", "SUPERC", "SUPERSET") is 

conventionally taken to be the re 1 at i on, 

more-specific-example-of. T h u s  the above example is the 

representation of the fact that C l y d e  is a specific example of 

Elephant . 
Brachman [Brachman, 8 3 1  catalogs m a n y  other interpretations 

o f  ISA and differences between systems that, on the surface, 

appear v e r y  similar. 
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3 . 2 . 6 . 4  -2 

Figure' 3-15 shows another semantic network. In Figure 

3 - 1 5 ( a )  instances of various relations using the relation names 

TEMP, LOC, COLOR, SIZE, ISA, and BEIWEEN are shown. T h e  meaning 

of the relations is as follows: 

TEMP(a,b) m e a n s  a i s  the temperature of b. 

LOC(a,b) m e a n s  a is located at b. 

COLOR(a,b) m e a n s  that a is the color of b. 

SIZE(a,b) m e a n s  a i s  the size of b. 

BE?WEEN(b,a,c) m e a n s  b is between a and c. 



120 
RELATIONS 

TEMP (WARM-BLOODED MAMMAL) 
I SA (DOG, MAMMAL) I SA (CAT, MAMMAL) 
I SA(F LDO,DOG) I SA(BOWSER , DOG) I SA (PUFF , CAT) 

COLOR (TAN, FIDO) COLOR ( T A N ~ B O W S E R )  COLOR (BLACK, PUFF) 

BETWEEN (MARY'  S, FIREHOUSE, BOB'S) 

LOC(MARY'S, F I D O )  LOC (F IREHOUSE,  BOWSER) L O C ( B 0 B '  S, P U F F )  

S I Z E  ( ~ O L B J  F I D O )  SI Z E ( 1 4 L B I B O W S E R )  S I Z E  (4LBJ P U F F )  - 
MAMMAL 

C A T  WARM-BLOODED 

1 I S A  

P U F F  F I D O  BOWSER 

TAN 14LB F I R E H O U S E  4 LB B L A C K  BOB 
M A R Y ' S  ~ O L B  
\ ' s  

U S  O F  I N F E R E N C F  

ISA(X,Y) A ISA(Y,Z) = >  ISA(X,Z) 

SIZE(X,Y) A SIZE(U,V) A x<u = >  SMALLER(Y,V) 

ISA(X,Y) A R(U,Y) = >  R(U,X) 

FIGURE 3,15 WPLF SFMWTIC NFTWORK 
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T h e  knowledge in a semantic net i s  g i v e n  m e a n ing, as 

demonstrated. here, by defining the relation names and other 

symbols used in the instances o f  relations, in terms of external 

entities. 
. .  

Figure 3-15(b) shows a graph w h i c h  represents the same 

knowledge that is in the set o f  instances s h o w n  in Figure 

3-15(a). T h e  object names are connected by arrows labeled with 

appropriate relation names. For example the instance 

produces the g r a p h  fragment 

Representation of g r a p h  fragments for other than binary 

relations i s  more difficult but s t i l l  straightforward, for 

instance, BE'WEEN in Figure 3-15(b). 

T h e  internal storage representation of semantic network i s  

very similar to the graphical representation shown and is built 

using pointers and list structures. T h e  explicit connections 

among the entities enhances the efficiency of programs that 

search through the semantic n e t w o r k  [Barnett & Bernstein, 771. 

Figure 3-15(c) shows some examples o f  inference rules for 

the semantic network. T h e  format of the rules is w e l l  formed 

formulae from the predicate calculus (see S e c t i o n  3.2.4). 

Inference rules c a n  also be represented a s  production rules in a 
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production system. Production systems c a n  be u s e d  t o  represent 

s o m e  procedural knowledge that c a n  be used to test for complex 

enabling conditions. This m a y  be difficult to express as WFFs. 

In Figure 3-15(c), variables, w r i t t e n  as s m a l l  letters, are 

a s s u m e d  to be universally quantified. 

.. 

T h e  first rule says that ( f o r  all X, Y, and 2) if X i s  a Y 

a n d  Y i s  a 2, then X is also a 2. An example o f  this i s :  PUFF 

is a CAT and CAT is a h4AhM.U; therefore, PUFF i s  a MIhMAL. Thus 

first rule says that ISA i s  transitive. 

T h e  second inference rule says that if Y and V are two 

o b j e c t s  that “have” SIZE, and the size of Y is less than the size 

o f  V, then Y is W L E R  than V. For example, 

SIZE(4,PUFF) & SIZE(14,BmER) & 4 14 = ’  SMALLER(PUFF,mER). 

T h u s  second rule defines a new relation SMALLER, w h o s e  

instances d o  not appear explicitly in the semantic network 

(Figure 3-15(b)). 

T h e  third inference rule says that, if X i s  a Y, and U i s  

R-related to Y, then U is also R-related to X. For example, 

Now let us consider the following example: 

ISA(DOG, MAPVMAL) & ISA(CAT, = ’  ISA(CAT, DOG). 
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This is a v a l i d  (by the application of inference rule 3 )  but 

erroneous inference. To avoid this kind of problem, i t  is 

necessary to have some non-syntactic (e.g., semantic) knowledge 

about the relations to which inference rules can be applied. 

.. 

One solution is to embed the inference rules in the 

inference engine along with the necessary ad hoc knowledge to 

avoid problems. 

Another solution is to have a rule, like the third one in 

the Figure 3-15(c), for each relation that is inheritable. 

However, both these solutions will cause problems, if the number 

of  relations occurring in the semantic network i s  large or if the 

relation set can be modified or expanded. 

A more general approach, originally proposed by Simnons and 

Slocum [Simnons & Slocum, 7 2 1 ,  is t o  treat relation names and 

object names more uniformly. With this approach, relations can 

be arguments to relations, and hence have the same properties as 

other objects. For example, temperature is defined as an 

inheritable property by an instance like 

INHERITABLE (TEMP ) 

The third inference rule in the Figure 3-15(c) can then be 

rewritten as 

ISA(x, y )  & r(u, y) & INHERITABLE(r) = )  r(u, x )  

One advantage o f  this approach i s  that i t  provides a natural 

method of  delineating legal values in a relation and, therefore, 
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it enhances error detection and consistency checking. Another 

advantage is- improved flexibility and expandability. The m a j o r  

disadvantage of this approach i s  i t s  loss in run-time efficiency. 

A n o t h e r  choice and tradeoff in a semantic network i s  storage 

space and computation time. This arises f r o m  the decision about 

which relations and w h i c h  instances in the relations should be 

stored explicitly and w h i c h  should be computed via the inference 

rules. The number of instances of relations can g r o w  in a highly 

non-linear w a y ;  for the example in Figure 3-15(b), the number of 

instances of the relation, SMALLER, grows as a quadratic function 

of the n u m b e r  of DOGS and CATS. 

A technique often used w i t h  semantic networks is to m a k e  a 

distinc t i o n  between general knowledge and specific knowledge and 

to store the two in a different manner. Referring to Figure 

3-15(b) one c a n  observe that specific knowledge lies at a l o w  

level in t h e  t r e e .  T h i s  m e a n s  [ B a r n e t t  & B e r n s t e i n ,  7 7 1 :  

( 1 )  T h e r e  are few, if any, chains below i t .  

( 2 )  Properties have simple values. 

( 3 )  &st objects in the s a m e  general classification have 

all and only a known set of properties. 

( 4 )  T h e r e  are large number of objects in a general class. 

T h e  specific knowledge in our example can be displayed as 
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FIDO DOG 40 I b  T a n  Mary’s 
B<IWSER DOG 14 l b  T a n  Firehouse 
PUFF CAT 4 l b  B l a c k  Bob’s 

The advantage o f  dividing knowledge into general and 

specific is that: 

( 1 )  T h e  specific knowledge can be gathered into a tabular 

form, as shown above, by simple mechanical means. 

( 2 )  T h e  specific knowledge (which i s  u s u a l l y  m o st of the 

semantic net) c a n  be kept in relatively inexpensive 

secondary storage and even accessed through an 

efficient, existing data management system. 

( 3 )  T h e  general knowledge can be kept in primary m e m o r y  

a n d ,  because m o s t  processing by the inference rules 

occurs o n  other than ”bottom” of the network, 

efficiency can be maintained. 

3.2.6.6 A d v a n t a p e s  D i s a d v a n t a m  

Advantages: 

( 1 )  Semantic nets can be used to represent definitional 

and relational knowledge that i s  too complex f o r  

ordinary data management techniques. 

( 2 )  Semantic networks allows inclusion of a d  h o c  

information. 
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Disadvantages: 

( 1 )  T h e  m a i n  disadvantage o f  using semantic networks to 

represent knowledge in KBSs is  that the chunk size i s  . 

fairly s m a l l .  This causes two problems: 

(a) Instances of relations do not lend 

themselves to being used in explanations of 

chains o f  reasoning developed by the inference 

rules - chains can be quite lengthy and tedious. 

( b )  Processing a semantic net c a n  assume large 

amounts of computer time. 

( 2 )  A n o t h e r  disadvantage i s  that m a n y  kinds of knowledge 

(e.g., procedural knowledge, relative knowledge, etc.) 

cannot be expressed as instances o f  relations in a 

natural manner. 

An example o f  KBS w h i c h  u s e s  semantic nets to represent 

knowledge i s  PROSPECTOR [Duda, et a l ,  781. 
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Semantfc nets are very popular knowledge representation 

m e t h o d s  in AI applications. Object-and-link structures capture . 

something essential about symbols and pointers in symbolic 

computation [Barr & Feigenbaum, 8 1 1 .  

But processing n o n  trivial nets c a n  consume large amounts of 

computer time. Besides these problems, there are m o r e  subtle 

problems involving semantics of the network structures [Barr & 

F e i g e n b a u m ,  8 1 1 :  

- W h a t  does a node (object) really m e a n ?  

- I s  there a unique w a y  to represent a n  idea? 

- H o w  i s  the passage o f  time to be represented? 

- H o w  does one represent things that are not facts about 

t h e  w o r l d  but rather ideas or beliefs? 

- W h a t  are the rules about inheritance o f  properties in 

n e  two r k s ? 

Current research o n  network representation schemes attempts 

to deal with these and similar concerns. 

3.2.7 

3.2.7.1 I n t r o d u c t i o n  

T h e r e  i s  abundant psychological evidence that people use a 

large, w e l l  coordinated body of knowledge f r o m  previous 
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experiences to interpret n e w  situations in their everyday 

cognitive activity [Barr & Feigenbaum, 811. H o w  can we represent 

this type o f  knowledge in a computer system (program)? M a n y  o f  

the techniques of AI applications (programs) are not powerful 

enough to a p p r o a c h  human performance in relation to vision, 

language, a n d  conxnon sense. 

M i n s k y  [Minsky, 751 first proposed a theory o f  nframesm as a 

m e c h a n i s m  for representing knowledge in the computer. His paper 

has evoked a great deal of discussion and interest in exploring 

further about frames and its theory. Some c o m u o n  motivating 

issues f o r  this interest in frames are: 

( 1 )  A c c o m n o d a t i o n  of both declarative and procedural 

knowledge in the same representational formalism. 

( 2 )  A c c o m n o d a t i o n  of m u n d a n e ,  ad h o c ,  a n d  idiosyncratic 

knowledge along with that w h i c h  is m o r e  uniform and 

repetitive in nature. 

(3) A c c o m n o d a t i o n  o f  partial and somewhat contradictory or 

inconsistent knowledge. 

( 4 )  A b i l i t y  to plausibly reason f r o m  a k n o w l e d g e base with 

features like the above. 

T w o  m a j o r  issues not yet dealt w i t h  within the emerging 

theory of frames are explanation of s y s t e m  behavior a n d  

naturalness o f  the knowledge-acquisition interface. 
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S o m e  of the desirable features o f  frames are given below 

(Kuipers [Kuipers, 7 7 1  calls t h e m  a "wish list"). No single . '  

frame based s y s t e m  has all the desirable properties and i t  may be 

many years before the technical problems implied by such a frame 

theory (like the development o f  large-scale organization of 

knowledge, and the ability of these structures to provide 

d i r e c t i o n  for active cognitive processing [Barr & Feigenbaum, 

8 1 1 )  c a n  be precisely stated and solved. The following 

d i s c u s s i o n  is based o n  [Kuipers, 771. 

( a )  D e s c r i D t i o n  

A frame provides a n  e1,aborate structure for creating and 

m a i n t a i n i n g  a description of a n  object in a domain. And a s  such 

a frame c a n  be viewed as a single knowledge chunk. T h e  

d e s c r i p t i o n  o f  a n  object includes a number of features o f  that 

object and the relations w h i c h  hold among those features. 

A f r a m e  has named slots corresponding to those definitional 

characteristics (i.e., features, relations, etc.). A primitive 

element in a frame mag be expanded to another frame and/or 

procedural knowledge m a y  be attached to a n  element w h e n  it's 

internal description becomes o f  interest. 

( b )  I n s t a n t i a t i o n  

T h i s  i s  the process by w h i c h  the frame creates a description 
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f r o m  observation of a n  object in i t s  domain. Features w h o s e  real 

properties have not been observed are represented by default (or 

assumed) values. T h e s e  default values c a n  be static o r  computed 

in terms o f  the values in other slots. 

A frame’s predicted ( o r  expected) description can be used to 

guide the collection of observations for instantiation. I t  also 

p r o d u ces the defaults w h i c h  substitute for unobserved features. 

. .  (d) JustificatiQp 

Different features of the frame description have different 

amounts of confidence. Some are clear observations, others are 

choices among a f e w  alternatives, and others are default 

assignments. 

(e) V a r i a t i o n  

A frame represents a certain (limited) domain, and hence a 

range o f  variation for objects w h i c h  belong t o  that d o m ain i s  

l i m i t e d  and specified. W h e n  a feature (or set of features) o f  a 

frame is outside the permissible range of variation in a frame, 

i t  m a y  cast doubt o n  the applicability of this frame and m a y  

indicate to the correction m e c h a n i s m  that another m e c h a n i s m  i s  

c a l l e d  for. 
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( f )  C o r r e c t i o n  

In m o s t  comnon cases of recognition, the identity of the 

object being described is not initially known. So selecting the 

proper frame to instantiate i s  part of the problem. The current 

"best guess" frame attempts to create a correspondence between 

w h a t  i t  expects to s e e  and the observations actually available. 

Anomalies may indicate that the current frame is not 

correct, and that a different point of v i e w  i s  called for. The 

frame can analyze the anomoly to select a m o r e  appropriate 

replacement. T h e  procedures that t e s t  and deal with unusual 

conditions are called m p n i t o r s .  

For small changes in the observer or the observed, 

perturbation procedures correct the description w i t h o u t  complete 

re c o m p u  t a t i on. 

( h )  T r a n s f o r m a t i a n  

In case of m o r e  significant changes, transformation 

procedures propose frames suitable for the n e w  situation. Those 

experiences I- the experiences that lead to those significant 

changes - are saved ( b y  complaint procedures) and incorporated 

into newer versions of the "faulty" frames w h e n  structural 

revisions become possible. 
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I t  is not possible to give a simple example that has all the 

above properties of a frame. The following example (Figure 3-16,  

based on [Barnett & Bernstein, 7 7 1 )  i s  provided to illustrate 

some of the concepts involved in frame based systems. 

The top of the Figure 3-16(a) provides a description about a 

dog. Explanation for each line is  provided below (line numbers 

are not part of frame definition; they are provided for 

explanation purposes only). 

Line 1 :  The first line states that a dog is a mammal. 

Line 2 :  Line 2 means that there is a slot named "kind" (of 

dog), that may be filled with a type of "breed". 

"Breed" is i t s e l f  a frame. 

Line 3: The color of the dog is limited to one o r  a combination 

of the colors selected by the SUBSET.OF operator. 

Line 4 :  The FRCM operator is used to pick out values from other 

frames and default values are indicated by underlining. 

Thus the combined effect of the phrase Color QE 

Kind is to make the default value for the color of a 

dog the default f o r  his breed. 

Line 5 :  Line 5 means that there is a slot f o r  the number of 

legs and the range i s  0 to 4 with a default o f  four. 

Line 6: Line 6 represents a slot f o r  weight, which is a 

positive integer with a default that is determined by 
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the typical size of m e m b e r s o f  the same breed. 

Line 7: The state of the dog is either "adult", the default, or 

"puppy", if age is known to be less than one year. 

Line 8: T h e  age of dog is restricted to be a positive number 

a n d  its default value can be calculated procedurally by 

"now birthday". 

Line 9: T h e  birth date of the dog i s  represented as a date in 

this slot. 

Line 10: T h e  name of the dog i s  represented a s  a string in this 

slot. 

Line 1 1 :  T h e  end of description of dog frame. 

F i g u r e  3-16(b) shows a frame for "boxer". 



1 
2 
3 

4 

5 
6 
7 
8 
9 
10 

11 

8 

dog FRAME ISA mamnal 
kind breed 
color SUBSET.OF {tan brown black w h i t e  rust) 

F R ( M c o l o r Q E k i n d  

leggedness 0.. .A  
weight ' 0 ,  E m Y l & Q E U  

age ' 0 ,  PPW b i r t h d a y  
state adult OR puppy if age 1 

birthday date 
name string 

boxer FRAME ISA 
color 
size 
tail 
ears 
temperment 
CXxmLAINTS 

END 

breed OF dog 
ONE.OF {_tan brown brindle) 
40.. . 6 0  
b o b b e d  OR long 
b o b b e d O R  floppy 
playful 
IF w e i g h t  > 100 THEN ASSUME 

boxer 
(great dane) 

Figure 3-16. EXAMPLE FRAME DEFINITIONS 
[Barnett & Bernstein, 771 
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L i n e  1: L i n e  1 declares that boxer is a breed and i t  is a dog. 

L i n e  2: T h e  color of a boxer i s  restricted to one of the colors 

I 

tan, brown, and brindle, w i t h  a default of tan. I t  i s  

legal for this to conflict w i t h  the dog frame (Figure I 

3-16(a)); i.e., brindle i s  not mentioned in that frame. 

If this breed did not have a color restriction, then 

.. 

this slot w o u l d  be omitted; this w o u l d  have the effect 

of not giving a default assignment for color in the dog 

frame (in Figure 3-16(a)). 

L i n e  3: T h i s  slot says that the size of a boxer i s  between 40 

and 60 pounds. No default is specified. T h u s  w h e n  the 

dog frame i s  applied to boxer, this default range will 

be used for weight (rather than an exact value). 

L i n e  4: Th i s  slot says that tail c a n  be "bobbed" or "long" w i t h  

"bobbed" being the default. 

L i n e  5: T h e  ears can b e  either "bobbed" or "floppy" w i t h  

"bobbed" being the default. 
I 

L i n e  6: L i n e  6 s a y s  that temperament is always playful. 

L i n e  7: T h i s  is an example of a complaint and a d  hoc knowledge 

used to m a k e  a reconmendation, n a m e l y ,  if y o u  see a I 

giant boxer ( >  1001bs.), then assume that i t  m ight be a 

Great D a n e  instead. 

L i n e  8: End of description of boxer frame. 
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. .  3.2.7.4 - L A  U i t i q p S c e n a r i a  

Procedures c a n  be attached to slots to recognize (or reason) 

a task. In some frame based systems, attached procedures are the 

principal m e c h a n i s m s  for directing the reasoning process, being 

activated to fill in slots or being triggered w h e n  a slot is 

filled [Bobrow, 791. 

Filliu S l o t s  

A f t e r  a particular frame has been selected to represent the 

current context or situation, the primary process in a frame 

based s y s t e m  is often just filling in the details called for by 

its slots. 

Figure 3-17 shows an example use of frame in a recognition 

task. The t o p  of the figure (Figure 3-17(a)) shows some feature 

values that have b e e n  detected for a n  object, here identified as 

654. 

A general matching procedure w o u l d  attempt to instantiate 

all frames in the s y s t e m  until a reasonable fit w a s  found: in 

o u r  example, "boxer" is a reasonable match. T h e n  the slots in 

the boxer frame will be filled w i t h  the observed data. If data 

is not available, default values will be used. If there is no 

contradiction, procedural attachments will be used to decide the 

values for the slots. 
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LW-LEVEL INFORMATION 

OBJECI' 6 5 4  

color = tan 
ears = bobbed 
leggedness = 4 
size 40 - 45 
temperment = m e a n  

TRIAL IDENTIFICATION 

[OBJECT 654 ISA dog 

kind boxer WITH [ c o l o r  t a n  
s i z e  40 - 45  
tai 1 ASSZMED bobbed 
ears bobbed 
temperment EXCEPTIONAL 

me a n ]  
color tan 
leggedness 4 
weight 40 - 45 
s t a t e  ASS-D adult] 

F i g u r e  3-17. INEXACT MATCH BY A FRAME SYSTEM 
[Barnett & Bernstein, 771 
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Default values are relatively inexpensive m e t h o d  of filling 

slots; they d o  not require powerful reasoning process. These 

m e t h o d s  account for a large part of the power of frames - any new . 

frames interpreting the situation c a n  m a k e  use of values 

determined by prior experience, without having to recompute them. 

W h e n  the needed information m u s t  b e  derived, attached procedures 

can take advantage of the current context, namely, slot-specific 

heuristics. In other w o r d s ,  general problem-solving methods can 

b e  augmented by domain-specific knowledge about h o w  to accomplish 

specific, slot-sized goals. 

In our example, a f t e r  filling the color and size slots, as 

information for the t a i l  slot i s  not available, a bobbed tail 

will be assumed (assuming there w a s  a frame f o r  tails). 

Similarly, w h e n  i t  tries to fill the temperment slot, i t  

notes the observed feature, "mean", w h i c h  i s  a contradiction to 

the expected value "playful". Thus, i t  activates the complaint 

m e c h a n i s m  w h i c h  notes that this particular boxer (object 654) is 

m e a n  and i t  i s  exceptional. 

I f  the w e i g h t  of the boxer w a s  too large, the complaint 

m e c h a n i s m  could (tentatively) change the identification of the 

instantiation of the boxer into the one for a G r e a t  Dane. There 

a r e  two advantages to this: 

( 1 )  R a t h e r  than returning to a very general 

pattern-matching activity, a candidate that i s  highly 

likely to be right i s  selected next. 
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( 2 )  T h e  slot values for this frame c a n  be transferred to 

the new frame w i t h  l i t t l e  additional w o r k .  

I f  the m a t c h  i s  good enough, then the frame can become m o r e  

informative. In our example, the transformation i s  f r o m  boxer to 

boxer dog, w h e r e  m o r e  information is observed, e.g., leggedness. 

A l s o ,  the dog i s  assumed to be adult. 

The above steps (prediction, correction, and gathering of 

m o r e  information) continue until all of the l o w  level information 

is consumed. The belief i s  that the style of recognition will be 

m o r e  goal directed and hence m o r e  accurate and efficient than 

general techniques that depend upon regularity and uniformity of 

structure. 

3.3. Inference m i n e  

3.3.1 Primara Functi- p f I n f e r e n c e E I L g i n e  

The IE provides central control of the KBS and thus affects 

both the performance and power of the system. The functions of 

the I E ' a r e :  knowledge use and control, knowledge acquisition, and 

explanation.- To d o  these, the IE mu s t :  

( 1 )  Control and coordinate s y s t e m  activities and 

resources. 

( 2 )  P l a u s i b l y  reason about domain specific problems by 

having access to and using the contents of the 
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knowledge base, the contents of workspace, and 

knowledge and procedures embedded in the I E .  

( 3 )  Link the KB with the inference module(s). 

As was mentioned in Section 2.5.1, in a KBS, the ability to 

solve a problem depends on: 

( 1 )  H o w m a n y  paths there are to a solution. 

( 2 )  The ability of the IE to reduce the number to a 

minimum. 

( 3 )  The knowledge in the KB. 

( 4 )  What information is available within the problem 

statement. 

Therefore, although the I E  is in comnand and acts as the 

driving element, the path to a solution a n d  the criteria for 

which to accept a solution or  abort a particular path are highly 

dependent on the content of the KB and the problem data. 

In the next section, some terminology (definitions) to 

describe inference engines i s  presented. This terminology is 

based on [Nilsson, 8 1 1 .  

. -. . 3.3.2 pefinitiom 

Sound LE: A IE is  sound if i t  produces only correct or  " I  don't 

know" solutions, i.e., i t  does not produce incorrect solutions. 

m l e t e  U: A I E  i s  complete if i t  can always produce a 
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solution to a posed p r o b l e m w h e n  a solution exists. 

ssible u: A IE is admissible if i t  always finds a 

minimal-cost solution w h e n  a solution exists. T h e  cost i s  taken 

to m e a n  the cost of using the solution, not necessarily the cost 

of finding i t .  

3.3.3. J n f e r e n c e  E n g i n e  Control S t r a t e g i e s  

In this section, some control strategies used by IEs  are 

presented. 

T h e  input to a n  IE i s  usually a set o f  initial conditions 

(or states) and goals. T h e  IE uses the KB and one of the control 

strategies to obtain the goal(s), operating w i t h i n  the 

constraints imposed by the initial conditions. 

S o m e  of the control methods are discussed below: 

. .  3.3.3.1 Forward Chain- 

This m e t h o d  involves applying the KB to the given conditions 

to infer n e w  conditions: continue in this m a n n e r  until the goal 

i s  satisfied. T h i s  strategy is a l s o  called data-driven, 

event-driven, and bottom-up (see the example in Section 3.2.5). 

T h e  rules applied to a state to produce new states are called 

F-rules. 
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. .  3.3.3.2 m C h a l n l n p  

This method involves applying the KB to the goal (or goal 

description) to produce new subgoals; continue this manner until 

constraints or primitive conditions (known to be solvable) are 

reached. Backward chaining i s  also known as goal-driven, 

expectation driven, and top-down. The rules applied to produce 

goals to produce subgoals are called B-rules. 

3.3.3.3 Chain B o t h Y a v s  

This method involves forward chaining from the initial 

conditions and backward chaining from the goal until a conmon 

middle term is produced, i.e., F-rules are applied to initial 

state and B-rules are applied to goal states. The control 

mechanism must, at every state, decide whether to apply an 

applicable F-rule or an applicable B-rule. 

. .  
3.3.3.4 Middle Term Chaining 

This method involves using the KB, guessing a middle term 

and solving separately the problem of getting from the initial 

conditions to the middle term and from the middle t e r m  to the 

original goal. Continue in this manner until a solution in terms 

of primitives is generated. This method is also called problem 

reduction. 

Figure 3-18 shows an example of first three techniques. The 

problem is to transfer 4 to 20. The KB contains three rules: 
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(1) Any integer, X, can be replaced by 2X (X -’ 2X). 
( 2 )  Any e v e n  integer, 2X ca n  be replaced by X (2X - >  X). 

(3) Any integer, X can be replaced by 3X + 1 (X - >  3X + 

1). 

. Start with 4 Figure 3-18 shows the use of f o r w d m  , .  

and apply the operators until 20 i s  produced. 

. Start with the Figure 3-18 shows the use o f  b a c k d a l n l n g  

g o a l ,  20, and use the inverse of the above rules and continue 

until 4 i s  produced. 

. .  

Figure 3-18 shows the use o f  the U b o t b w a v s  technique. 

F i r s t ,  one s t e p  of back chaining produces the nodes labeled 1 0  

and 40. T h e n  one step of forward chaining produces the nodes 

labeled 8, 2, and 13. Finally, one m o r e  step of b a c k  chaining is 

done to produce the nodes labeled 5 ,  3, 13, and 80. Since 1 3  is 

in both the forward and backward grown “wave fronts”, the process 

c a n  terminate: otherwise, the steps of forward and backward 

chaining w o u l d  continue until either a solution w a s  found or the 

s y s t e m  gave u p  because of violation of some constraints (like 

computation time, for instance). 
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F i g u r e  3-19 shows e n  example 0 9  problem reduction approach. 

The problem is t o  s h o w  that AD equals CD. To s h o w  this, the 

problem can be reduced to the following subproblems CNilsson, 

711: 

( 1 )  In order to s h o w  that two line segments are equal, 

s h o w  that they are Corresponding elements o f  congruent 

triang ler. 

( 2 )  In order to show that two triangles a r e  congruentl 

s h o w  the equality o f  a side and t w o  triangles in 

corresponding positions or o f  an a n g l e  and two rider. 

(3) In order to s h o w  that two angles a r e  equal, show th8t 

they are both right angles. 

O f  course, these problems could b e  further divided into 

primitive f o r m .  The actual prooQ of this problem can be found in 

CNilssonl 711. 

An example sqstem, Gelernter's Geometry Theorem-Proving 

Eachine CNewell Q Simon, 723, uses this technique to solve a 

given problem. 

GIVEN: ABD= CBD 
A D L B A  
cD*Bc 

PROVE: A D = c D  

A /  

Figure 3-19. Diagram for Problem Reduction 

CNilsron, 711 
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3.3.3.5 pjrecti-1 itx pf Control S t r a t e p v  

Anothe; w a y  of classifying IE control strategies is by i t s  

directionality. T h i s  type of classification i s  typically used in 

s p e e c h  understanding systems where the input (waveform) i s  

linearly ordered. T h e  two m a j o r  types are: fixed directionality 

and variable directionality. 

.. 

(a) E i x e d  Directionalitv 

This type o f  control strategy is typically described as 

left-to-right or right-to-left. In the fixed directionality type 

of control strategies, the input is processed in a predetermined 

d i r e c t i o n  until either: 

( 1 )  All data have been consumed and the problem i s  

successfully solved or 

(2) A b l o c k  i s  reached and n o  further progress can be 

m a d e .  

In the latter case the s y s t e m  reacts in a predetermined 

fashion, typically backing up to a point before the block 

occurred at w h i c h  point a n  alternative option w a s  available. At 

this point, an alternative path is assumed, and processing of the 

input is continued in the original direction. T h i s  technique is 

iterated until either the p r o b l e m  is solved or no m o r e  

alternatives exist. 
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(b) Variable P i r c c t i a n a l i t v  

T h e  first problem in speech understanding systems is, given 

a sentence to understand w h e r e  to start, starting with the first 

w o r d  in a sentence is not necessarily the m o s t  efficient strategy 

[Barr & Feigenbaum, 811. T h e  fixed-direction type of strategies 

work w e l l  w i t h  the precompiled n e t w o r k  representation. T h e  

disadvantage o f  this strategy is that if the first w o r d  is not 

identified correctly, or is not identifiable, understanding the 

rest o f  the sentence is retarded. In such cases variable 

d i r e c t i o n  control strategy can be used. 

- .  

A completely variable directionality in a s y s t e m  is often 

called island driving. . The idea i s  to start processing the input 

at the point o r  points deemed to be least ambiguous or contain 

the m o s t  robust clues as to their identity. T h e  points (also 

called anchor points o r  islands) are then grown, m i d d l e  outward 

until they collide or a block occurs. If a block occurs, another 

set of points are determined in the unprocessed areas. Thus, by 

. .  

starting in areas containing the m o r e  certain information (more 

c e r t a i n  hypotheses), part o f  combinatorial explosion of 

fixed-directionality strategies will be avoided because back up 

will rarely occur across the islands, but only between them. A 

p r o b l e m  with the island driving strategy, however, is that there 

c a n  be m a n y  islands a n d ,  h e n c e ,  m a n y  hypotheses most of w h i c h  m a y  

not be reliable and soon have to be abondoned. 

T h i s  t y p e  o f  strategy is used in HEARSAY, an d  in the SRI 
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Speech Understanding System. 

Another strategy, explored in HWIM ("Hear What I Mean", 

developed by BBN) [Wolf &Woods, 8 0 1 ,  is a hybrid between island 

driving and the left to right strategy. The problem of not being 

able to understand the first word in the sentence is overcome by 

trying to understand any of the first three or four words. Then 

the expansion of this word is in one direction at a time: first 

back to the beginning of the sentence, and then to the end. This 

dramatically reduces the number of extension hypotheses that must 

be considered at one time [Barr & Feigenbaum, 8 1 1 .  

Another way of differentiating IE strategies is via 

breadth-first vs. depth-first. 

-StratePv 3 . 3 . 3 . 6  Breadth - First 

In a breadth-first system, all possible methods of 

continuing are attempted in parallel. This is shown in Figure 

3 - 1 8 ,  where each (horizontal) level of the graph was generated by 

a single cycle of the system. The breadth-first strategy is 

described by the following algorithm (from [Nilsson, 7 1 1 ) :  

( 1 )  Put the start node on a list called OPEN. If the 

start node is a goal node, a solution has been found. 

( 2 )  If OPEN i s  empty, exit with failure; otherwise 

continue. 
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( 3 )  Remove the first node on OPEN and put i t  on a l i s t  

c-alled CLOSED; c a l l  this node n. 

( 4 )  Expand node n, generating all of i t s  successors. If 
.. 

there are no successors, go imnediately to ( 2 ) .  

( 5 )  Put the successors at the end of OPEN and provide 

pointers f r o m  these successors back to n. 

(6) I f  a n y  of the successors are goal nodes, exit w i t h  the 

solution obtained by tracing back through the 

pointers; oth'erwise g o  to (2). 

An 8-puzzle i s  a square tray containing eight square tiles 

of equal size numbered 1 to 8. T h e  space f o r  the ninth tile is 

vacant. A tile m a y  be m o v e d  by sliding i t  vertically or 

horizontally in to the empty square. The p r o b l e m  i s  to transform 

one particular configuration say, that of Figure 3-20(a), into 

another g i v e n  t i l e  configuration say, that of Figure 3-20(b). 

Figure 3-20. 8-Puzzle 

Figure 3-21 (taken f r o m  [Nilsson, 8 1 1 )  shows the 

breadth-first strategy applied to an 8-puzzle. T h e  nodes are 

labeled by their corresponding state description and a r e  numbered 
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in the order i n  w h i c h  they w e r e  expanded. T h e  dark branches s h o w  

a solution of five m o v e s .  

Control- 3.3.3.7 D e D t h  - First 

In a depth first system, some path (node, state, etc.) i s  

selected and a single continuation is attempted, i.e., the node 

i s  not fully expanded all at once. This path continues growing 

until either the path reaches a solution or some path-length 

constraint i s  violated. In the latter case, the path is backed 

up to the deepest node at w h i c h  an alternative expansion exists. 

At that point, another path i s  generated. T h i s  process continues 

until either a solution i s  produced or the alternatives are 

exhausted (Figure 3-22). 

The d e o t b P f a r o d e  i s  defined as follows [Nilsson, 711:  

( 1 )  T h e  depth of the root node is zero. 

(2) T h e  depth of any node descendent of the root i s  one 

plus the depth of i t s  p a r e n t .  

The following a l g o r i t h m  describes the depth-first control 

strategy ( t a k e n  f r o m  [Nilsson, 711): 

( 1 )  Put the start node on a l i s t  called OPEN. If i t  i s  a 

goal node, a solution has been found. 

( 2 )  I f  OPEN i s  empty, exit with failure; otherwise 

continue. 
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( 3 )  Remove the first node f rom OPEN and put i t  on a l i s t  

c a l l e d  CLOSED. Call this node n. 

( 4 )  If the d e p t h  of n equals the depth bound (maximum 

depth), g o  to ( 2 ) ;  otherwise continue. 

( 5 )  E x p a n d  node n generating all successors of n. Put 

these (in arbitrary order) at the beginning of OPEN 

and provide pointers back to n. 

( 6 )  If a n y  o f  the successors are goal nodes, exit with the 

solution obtained by tracing back through the 

pointers; otherwise g o  to (2). 

. -  Bn -le. 3 Puzzle 

Figure 3-23 shows the tree generated by using depth-first 

strategy. The problem, like before, w a s  to t r a n s form the 

configuration shown in Figure 3-20(a) into the configuration 

3-20(b). 

Figure 3-23 ( t a k e n  f r o m  [Nilsson, 7 1 1 )  shows depth-first 

control strategy applied to a n  8-puzzle. 

M o s t  m e t h o d s  a n d techniques used to implement inference 

engines are restricted by the choice of a representation 

technique for the knowledge base (see Section 3.1.2, "Choices and 

Restrictions"). H o w e v e r ,  a f e w  m e t h o d s  (e.g., search methods) 

are general e n o u g h  to be used with a variety of knowledge base 

representations. In this section, some search techniques are 

discussed. 
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65 
_ -  

FIGURE 3-22, DEPTH-FIRST RACK CHAI NING 
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3.3.4.1 S e a r c h  Techpiaues I 

S e a r c h  techniques used in KB and AI systems refer to a large - ’  I 
body of core ideas that deal with deduction, inference, planning, 

coxmnon sense, and related processes. T h e  real p r o b l e m w i t h  

search technology (or techniques) is: 

, 
I 

I 
I 

( 1 )  To find a n  algorithm w i t h  a specified set of I 

, 
characteristics, and 

( 2 )  T o  ensure that that a l g o r i t h m  is efficient and does 

not suffer f r o m  combinatorics w h e n  handling problems 

in the intended area of application. To accomplish 

this. i t  i s  necessary to incorporate domain-specific 

know1 edge. 

3.3.4.2 S e a r c h  Svstem C m p o n e n t s  

A search s y s t e m  consists of five m a j o r  components: I 

( 1 )  S e l e c t  - pick the next activity to be performed f r o m  

agenda of possible next activities. 

( 2 )  ExDand - perform the selected activity, w h i c h  often 

m e a n s  enumeration o f  some o r  all of the predecessor 

activities. 



. 
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( 3 )  E v a l u a t e  - compute merit scores for activities 

created by the expansion process. 

( 4 )  Prune - discard hopeless cases or those that appear 

to have l i t t l e  promise. 

( 5 )  Terminate - determine whether to continue processing 

and whether the problem has been sufficiently solved. 

F r o m  the above five components, i t  i s  easy to realize the 

importance of knowledge base in providing accurate guidance for 

each component (by incorporating domain-specific knowledge). 

This could improve the s y s t e m  performance by orders of magnitude. 

In many search m e t h o d s ,  the selection, evaluation, and 

pruning (if any) are combined into a u n i f o r m  numerical technique. 

The function used f o r  this purpose i s  called a n  evaluatiqp 

f u n c t i o n .  

3.3.4.3 E v a l u a t i o n  P u n c t  i o n  lfl 

T h e  purpose of a n  evaluation function i s  to provide a m e a n s  

for ranking those nodes (activities) that are candidates for 

expansion to determine w h i c h  one i s  m o s t  likely to b e  o n  the best 

p a t h  to the goal [Nilsson, 7 1 1 .  

S u p p o s e -  some function, f, could be used to order nodes for 

expansion, then f(n) denotes the value of this function. The 

evaluation function f i s  defined s o  that the m o r e  promising a 

n o d e  is, the smaller is the value of f. The node selected for 

e x p a n s i o n  is one at which f is minimum. 
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Conventionally, the nodes are ordered in increasing order of 

their f values. An algorithmwhich selects a node (from a l i s t  

of nodes called OPEN) having the smallest f value (for next 

expansion) i s  called an ordered - search &orithm i.e., an 

ordered-search algorithm selects a node for expansion at which f 

i s  minimum. 

3 . 3 . 4 . 4  Drdered Sear& u o r i t h m  

The ordered search algorithm (taken from [Barr & Feigenbaum, 

8 1 1 )  is given below. 

( 1 )  Put the start node s on a list, called OPEN, of 

unexpanded nodes. Calculate f ( s )  and associate its 

value with node s. 

( 2 )  If OPEN is empty, exit with failure; no solution 

exists. 

( 3 )  Select fromOPEN a node i at which f is minimum. I f  

several nodes qualify, choose a goal node if there is 

one, and otherwise choose among them arbitrarily. 

( 4 )  Remove node i f r o m O P E N  and place i t  on a list, called 

CLOSED, of expanded nodes. 

( 5 )  If i is a goal node, exit with success; a solution has 

been found. 
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( 6 )  Expand node i ,  creating nodes f o r  all i t s  successors. 

For every successor node j o f  i: 

a. Calculate f(j). 

b. I f  j i s  neither in l i s t  OPEN nor in l i s t  CLOSED, 

then add it to OPEN, with i t s  f value. A t t a c h  a 

pointer f r o m  j back to i t s  predecessor i (in 

order to trace back a solution p a t h  once a goal 

node i s  found). 

c .  I f  j w a s  already on either OPEN o r  C L O S E D ,  

compare the f value just calculated f o r  j with 

the value previously associated with the node. 

I f  the n e w  value is lower, then: 

i .  Substitute i t  f o r  the old value. 

i i .  Point j back to i instead of to i t s  

previously found predessor. 

i i i .  I f  node j w a s  on the CLOSED list, m o v e  i t  

back to OPEN. 

( 7 )  Go to (2). 

T h e  w a y  in w h i c h  the a l g o r i t h m  works i s  illustrated by 

considering the s a m e  8-puzzle example. 
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An -le, - -  8 nuzzle 

Consid'er the simple evaluation function 

w h e r e  g(n) i s  the length of the path in the search tree f r o m  the 

start n o d e  to node n. and w(n) counts the number of misplaced 

tiles in the state description w i t h  node n. T h u s  the start node 

has a n  f value equal to 0 + 4 = 4 .  

T h e  results of applying the ordered-search algorithm to the 

8-puzzle a n d  using this evaluation function are sumnarized in 

F i g u r e  3-24. T h e  value o f  each node i s  circled. T h e  uncircled 

n u m b e r s  s h o w  the order in w h i c h  nodes are expanded. I t  i s  

interesting to note that the s a m e  path i s  found here as w a s  found 

by o t h e r  search m e t h o d s ,  although the use of evaluation function 

has resulted- in substantially fewer nodes being expanded. 

T h e  search results are critically dependent o n  the choice of 

the e v a l u a t i o n  function, f ,  w h i c h  should discriminate sharply 

b e t w e e n  promising and unpromising nodes. If the discrimination 

is inaccurate, however, the ordered search m a y  m i s s  a n  optimal 
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GOAL NODE ( 5 )  
7 6 5  - 6 5  

FIGURE 3-24, 1 TH H 
BASED ON CNILSSON, ‘711 
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solution o r  all solutions. I t  c a n  be proved [as in Nilsson, 711 

that the ordered search algorithm i s  ”sound” no m a t t e r  h o w  bad 

the evaluation function is. 

In the next section one particular evaluation m e t h o d  which 

c a n  produce a n  optimal (minimum cost) solution i s  described. I t  

is called the A* algorithm. 

T h e  A* a l g o r i t h m  being described w a s  proposed by Barr & 

F e i g e n b a u m  [Barr & Feigenbaum, 811. Historically, the 

predecessors of A* include Dijkstra’s [Dijkstra, 591  and M o o r e ’ s  

[Moore, 591 algorithms. A class of algorithms similar to A * ,  is 

used in operations research under the name of branch-and-bound 

algorithms. 

In A*, the evaluation function, f ’ ( x )  is the cost of a 

solution p a t h  constrained to go through node x ;  h e n c e ,  its value 

. . .  is to b e  -zed . Further, f ’  i s  assumed to be additive in the 

cost of g o i n g  f r o m  one node in a path to another. T h u s ,  if n(1) 

.... n(m) (n(1) = start, n(m) = g o a l )  i s  a n  optimal solution 

p a t h  , t h e n  

w h e r e  K ( x , y )  i s  the cost of going f r o m  state x to state 9 in one 

step. F o r  a n y  node, n, f’ c a n  be expressed as 
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where f’(x;g) i s  the minimal cost of a path (of perhaps many 

steps) from x to y. Normally, the above i s  written as .. 

where 

g(n) = f’(start. n) and 

h(n) = f*(n, goal). 

W e  desire our evaluation function f to be an estimate o f  f’. 

Thus f can be approximated as 

Where g ’  is the estimation of g ,  and h ’  i s  the estimation of 

h. 

The A +  algorithm is given below [Hart, et al, 6 8 1 :  

( 1 )  Mark s “open” and calculate f(s). 

( 2 )  Select the open node n whose value of f is smallest. 

Resolve ties arbitrarily, but always in favor of any 

node n belonging to T (T is the set of goal nodes). 

( 3 )  If n belongs to T, mark n ”closed” and terminate the 

algorithm. 

( 4 )  Otherwise, mark n closed and apply the successor 

operator S to n. Calculate f for each successor of n 
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and mark as "open" each successor not already marked 

closed. Remark as open any closed node n(i) which is 

the successor o f  n and f o r  which f(n(i)> is smaller 

now than i t  was when n(i) was marked closed. Go to 

(2). 

- ,  

I t  can be shown that A* is admissible and optimal [as in 

Nilsson, 7 1 1 .  To guarantee admissibility, a necessary condition 

is that 

h'(n) ( =  h(n) f o r  all n. 

A necessary condition for being optimal is that 

This is called the consistency condition. Without this 

constraint, A* will be still be admissible but no longer optimal 

[Nilsson, 7 1 1 .  

3.3.4.6 AM) 'OR GraDh 

The discussion in the previous sections (including 

breadth-first and depth-first strategies) i s  related to what i s  

generally known as ~ t a t e  saace search. The 8-puzzle is a simple 

example of state-space representation. This section discusses 

search methods in relation to problem-reduction. 

A generalized notation for problem reduction is called the 

AND/OR graph. According t o  Nilsson [Nilsson. 7 1 1 ,  an AND/OR 



graph is constructed according to the following rules: 

A 

-Each node represents either a single problem or a ret 

09 problems to be solved. The graph contains a start 

node corresponding to the original problem. 

- .  

A node representing a primitive problem, called a 

terminal noder has n o  descendants. 

F o r  each possible application of a n  operator to 

problem P,  transforming it to a set o f  subproblemsr 

there is a directed arc from P to a node representing 

the resulting subproblem set. For exampler F i g u r e  

3-25 illustrates the reduction of P to three 

different: problem sets 

P 

C 

D E F  G H 

AI B, and C 

P 

F G H 

a. b. 

Figure 3-25. An AND/OR Tree 

[Barr & Feigenbaum, a13 
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( 4 )  For each node representing a set of two or m o r e  

subproblems, t h e r e  are directed arcs f r o m  the node for 

the s e t  to individual nodes for each subproblem. 

S i n c e  a s e t  of subproblems can be solved only i f  its 

m e m b e r s  c a n  all b e  solved, the subproblem nodes are 

called AND nodes. To distinguish t h e m  f r o m  OR nodes, 

the arcs leading to AM)-node successors of a common 

parent are joined by a horizontal line. 

- .  

( 5 )  A simplification of the graph produced by rules 3 and 

4 m a y  b e  m a d e  in the special case w h e r e  only one 

application of a n  operator is possible for problem P 

and w h e r e  this operator produces a set of more than 

one subproblem. As Figure 3-25 illustrates, the 

intermediate OR node representing the subproblem s e t  

m a y  then be omitted. 

A node or p r o b l e m  i s  said to b e  solved if one of the 

following conditions holds: 

( 1 )  T h e  node is in the s e t  of terminal nodes (primitive 

problems). 

(2) The node has AND nodes a s  successors and all these 

successors are solved. 

( 3 )  T h e  node has OR nodes as successors and any one of 

these successors i s  solved. 
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A node or p r o b l e m  is said to be unsolvable if: 

(1 )  T h e  node has no successors and i s  not in the set of 

terminal nodes. That is, i t  i s  a nonprimitive problem - ' .  

to w h i c h  no operator can b e  applied. 

( 2 )  T h e  node has AM) nodes as successors and one or m o r e  

of these successors are unsolvable. 

(3) T h e  node has OR nodes a s  successors and all of these 

successors are unsolvable. 

T h e  difference in searching a n  AND/OR graph and a n  ordinary. 

state-space graph i s  the presence of AND. T h i s  causes many 

conceptual complications to the search problem. 

e f m t i o n  nf a O~tlmal Solutipn . . .  

A solution of a n  AND/OR graph i s  a subgraph demonstrating 

that the start node i s  solved. T he cost of a s o l u t i o n  tree can 

be defined in either of two w a y s  [Barr & Feigenbaum, 8 1 1 :  

( 1 )  T h e  cost. of a solution tree i s  the s u m  of all arc 

costs in the tree. 

( 2 )  T h e  cost of a solution t r e e  i s  the s u m  of arc 

costs along the most expensive path from the root to a 

terminal node. 

For example, if every arc in the solution tree has cost 1 ,  
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t h e n  the s u m  cost is the number o f  arcs in the tree: and the 

m a x i m u m  cost is the d e p t h  of the deepest node. 

Let C(n,m) be the cost of the arc f r o m  node n to a 
- . _  

successor node m. Define a function h(n) by: 

( 1 )  If n i s  a terminal node (a primitive problem), then 

h(n) = 0 .  

( 2 )  If n has OR successors, then h(n) is the minimum, over 

all its successors m, of c(n,m) + h(m). 

( 3 )  If n has AND successors and s u m  costs a r e  used, then 

h(n) is the sumnation, over all successors m, o f  

c(n,m) + h ( m ) .  

( 4 )  If n has AND successors and m a x  costs are used, then 

h(n) is the m a x i m u m ,  over all successors m, of  c(n,m) 

+ h(m). 

( 5 )  If n is a nonterminal node w i t h  no successors, then 

h(n) i s  infinite. 

According to this definition, h(n) is finite if and only if 

the p r o b l e m  represented by node n is  solvable. For each solvable 

n o d e  n ,  h(n) gives the cost o f  a n  optimal solution tree for the 

p r o b l e m  represented by node n. If s i s  t h e  n o d e ,  then  h(s) is 

the cost of a n  optimal solution to the initial problem. 

An example AND/OR tree i s  shown in Figure 3-26. 
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FIGURE 3-26, sur1 COSTS 
BASED ON [BARR 8 FEIGENBAUM, ‘811 
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3.3.5 MeasurcsQfPerformance 

Section 3.3 i s  concluded by briefly discussing two measures 

of performance. The definitions and discussion are based on - '  

[Nilsson, 7 1 1  a n d  [Barr & Feigenbaum, 8 1 3 .  

Performance measurement for KBSs i s  not easy a s  i t  is for 

many other types of computer systems, because run time and 

dynamic m e m o r y  consumption of KBSs are often h i g h l y  non-linear 

functions of some problem parameters. As a result i t  is very 

difficult to determine the heuristic power o f  a s e a r c h  technique 

in KBSs. Ho w e v e r ,  certain measures o f  performance c a n  be used in 

comparing various techniques. T h e y  are: penetrance and branching 

factor. 

3.3.5.1 P e n e t r a n c e  

The penetrance, P, i s  defined as 

P = LIT 

w h e r e  L is the length of the derived path f r o m  the initial state 

(or n o d e )  t o  the g o a l, and T is the total number o f  states (or 

n o d e s )  g enerated while searching for a solution. 

I f  the IE proceeds directly to a solution w i t h o u t  generating 

a n y  false paths o r  unused states, the penetrance achieves its 

m a x i m u m  value 1 .  Blind search i s  characterized by small values 

of P. Since performance i s  u s u a l l y  nonlinear with L, the value 

of P generally decreases with increasing L, and the value of P(L) 
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is estimated t o  characterize performance. 

3.3.5.2 Branching Factor 
- .  

Branching factor is more nearly independent of the length of 

the optimal solution path. I t s  definition is based on the 

assumption of a tree with the same total number of nodes, T, as 

states produced by the system in solving a problem. The tree i s  

further assumed to be one in which: 

( 1 )  Every expanded node has B descendants, and 

( 2 )  The tree has paths o f  length, L, the number o f  

operators in the solution path of the original 

p r o b 1 ern. 

Therefore, 

2 L L i  
T = B + B  + . . . +  B = E B  

i -0  

This can be written as 

L+ 1 
T (B - l)/(B-l) 

and solved for B, the branching factor, by iteration. 

By definition, B can never be less than 1 .  A value of B 

near unity (i.e., small) corresponds to a search that is highly 

focused toward the goal with very l i t t l e  branching in other 

directions, while large values of B indicate that the system has 

wasted time expanding nodes not used in the final solution or  has 
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included states that have not been further expanded. 

3.3.5.3 U l e s  

Figure 3-27 shows a graph w i t h  T = 15 nodes and a solution 

path (shown by the darkened line) of length L = 3. Therefore, 

the penetrance 

P = L/T = 1 / 5 .  

To the right i s  shown a balanced tree with T = 15 and L = 3. 

As c a n  be seen from Figure 3-27, B = 2 and one c a n  verify that 

This m e a s u r e  i s  useful in applications w h e r e  computation 

time is a function of input length: f o r  example, the number of 

w o r d s  in a sentence or input to a natural language understanding 

system. 
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a. b. 

T = l 5  
L =  3 
P = l/5 
B =  2 

FIGURE 3-27, FXAM PLE MOVF GRAPH AND RA LANCED TREE 
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3.4 W o r w  Benresentat i o n  Isr Blackboard) 

3.4.1 I n t r o d u c t i o n  

O n e  of the major component in a KBS is the workspace 

representation (or blackboard). A blackboard records 

intermediate hypotheses, decisions, and results that a KBS 

manipulates during a p r o b l e m  solving activity i.e., i t  i s  the 

e n c a p s ulation of the system’s current state in a p r o b l e m  solving 

activity. I t  includes: 

( 1 )  P l a n  - the p l a n  describes the overall or general. 

attack the system will pursue against the current 

p r o b l e m  (including current plans, goals, problem 

states, contexts, etc). 

( 2 )  A g e n d a  - the agenda is a list of activities that can 

be done next (which generally correspond to knowledge 

base rules that are relevant to some decisions taken 

previously). 

( 3 )  H i s t o r y  - the history records what has b e e n  performed 

(and w h y )  to b r i n g  the s y s t e m  to i t s  current state, 

w h i c h  is used to provide explanations. 

(4) So l u t i o n  Set - a solution set represents the candidate 

hypotheses and decisions the s y s t e m  has generated thus 

far (along with the dependencies that relate decisions 
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to one another). 

A simple example o f  a workspace representation in a 

progranxning language s y s t e m  (like LISP) is a push-down stack. 

T h e  stack contains the bindings of global variables, temporary 

values, and return addresses. In this type of system, the 

p r o g r a m  counter (which identifies the instruction to be executed 

next) acts a s  the agenda mechanism. These systems, however, do 

not have any explanation mechanism, w h i c h  is essential to a KBS. 

E v e r y  KBS uses some type of workspace for intermediate 

decision representation, but only a f e w  explicitly employ a 

blackboard for the various types of functions described above. 

- .  

T h e  following subsections briefly discuss two techniques 

used to represent workspaces : HEARSAY Blackboard (also known a s  

(3lU B l a c k b o a r d )  and M o v e  G r a p h s  ( o r  -/OR graphs). 

3 . 4 . 2  )TEARSAYBlackboard 

T h e  designers of HEARSAY-I1 within the Carnegie-Mellon 

University S p e e c h  Understanding Systems, employed a novel and 

interesting w a y  to represent a workspace called a "blackboard" 

[Erman, et a!, 8 0 1 .  T h e  s a m e  technique has been used in KBSs 

built f o r  various tasks such as: 

X-ray crystallography [Feigenbaum, et al, 771. 

Signal interpretation [Nii &. Feigenbaum, 781. 

V i s i o n  [Hanson & Riseman, 781. 
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Psychological modeling [Rumelhart, 761. 

T h e  blackboard is a data structure: 

( 1 )  On w h i c h  the hypotheses and their support criteria c a n  

be stored, and 

( 2 )  W h i c h  acts as a n  intermediary among m u l t i p l e  knowledge 

sources and the system's inference engine. 

K n o w l e d g e  in HEARSAY-I1 is organized into various knowledge 

sources. T h e  board i s  subdivided into 8 information levels 

corresponding to intermediate representation levels of the 

decoding process (phrases, w o r d s ,  syllables, etc.). T h e  primary 

relationships between levels is compositional: w o r d  sequences 

are composed o f  w o r d s ,  w o r d s  are composed o f  syllables, and s o  

on. E a c h  hypothesis resides o n  the blackboard at one o f  the 

levels and bears a defining label chosen f r o m  a set appropriate 

to that level. W h e n  KSs are activated, they create and m o d i f y  

these hypotheses o n  the blackboard, record evidential support 

between levels (usually adjacent), and a s s i g n  credibility 

ratings. 

F i g u r e  3-28 shows levels and KSs in the HEARSAY-I1 system. 

A r r o w s ,  labeled with KS names, s h o w  input (circled ends) and 

output (pointed ends) levels. 
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Figure 3-29 shows a fragment of a blackboard (a very 

simplified version o f  one presented in [Erman, et al, 8 0 1 ) .  As 

depicted, the support i s  ambiguous. For example, the w o r d  ARE at 

the lexical level could be supported by the existence of the 

phonemes AW, ER at the phonetic level. O r  the w o r d  ARE could 

have been predicted from higher level considerations and then 

caused the phoneme predictions. T h e  Figure 3-29 also shows 

another competing w o r d  OR. Th i s  could have resulted if the 

phonemes AW, ER w e r e  ambiguously recognized a s  either ARE or  OR. 

Th e n ,  the "ARE ANY" w o u l d  be in competition with "OR ANY". 

T h u s ,  the blackboard serves as a n  ideal structure for 

representing competing hypotheses. HEARSAY-If copes with this by 

getting the KSs at different levels to cooperate in the solution 

process. In doing this, HEARSAY-I1 combines both top-down and 

bottom-up processing and reasons about resource allocation w i t h  a 

process called w. A m o r e  detailed 

description of this concept can be found in [Hayes-Roth, e t  al. 

831. 
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-LEVELS- 

CONCEPTUAL 

-KNOWLEDGE SOURCES- _ .  

SEMANTIC WORD HYPOTHESIZER 

PHRASAL 

LEXICAL 

SYLLABIC 

SURFACE 
PHONEMIC 

M N E T  I C 

SEGMENTAL 

PARAMETRIC 

1,- w- 
\ I - - - -  

SYNTACTIC PARSER 

SYNTACTIC WORD HYPOTHESIZER 

PHONEME HYPOTHESIZER 

WORD CANDIDATE GENERATOR 

PHONOLOGICAL RULE APPLIER 

PYONE-PHONOME SYNCHRONIZER 

F-iONE SYNTHESIZER 

SEGMENT PHONE SYNCHRONIZER 

PARAMETER SEGMENT SYNCHRON I ZER 

SEGMENTER CLASSIFIER 

FIGURE 3-28, HFARSAY 11 I FVFI s OF REPRFSENTATION 
BASED ON CERMAN, ET AL, ’%I 
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I 

L E X  I C A L  ANY I I 

/ 
/ 

/ 
/ 

/ 
./ 

I A Y  I PHONEM I C AW ER 

FIGURE 3-29, B I  ,ACKBOARD EXAMPLE 
B A S E D  ON [ E R M A N j  E T  A L j  '811 
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To swxnarize, a blackboard fills all the roles of a 

w o r k s p a c e  representation: agenda, plan, history, and solution 

set. 

( 1 )  P l a n  - T h e  blackboard is the globally visible data 

structure and multiple levels provide the necessary 

abstractions for searching a large space. 

( 2 )  &&end& - W h e n  a n  hypothesis is placed in the 

blackboard, i t  is to be presented to the KSs that have 

the hypothesis level as their input level, and the set 

o f  all s u c h  presentations that have not yet been 

performed o n  the agenda. 

( 3 )  A H i s t o r y  - T h e  support represented explicitly in the 

blackboard is a trace of the evolution of the system’s 

state. 

( 4 )  Solut imSet - The candidate hypotheses reside at each 

level in the blackboard along with a label chosen from 

a set appropriate to that level. 
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F i g u r e  3-30 shows an example of a n  AND/OR graph. The 

example is a formation of a plan to go to New Y o r k  City. E a c h  
- ._  

node in the graph i s  subgoal of its parent node (since this i s  a 

g r a p h ,  a node m a y  have m o r e  than one parent). T h e  goal "go to 

New York" c a n  be satisfied by satisfying either the subgoal 

"Drive a Car" or the subgoal "Fly by Plane", and is, thus, called 

a n  OR node. The subgoal "Buy a Plane Ticket" i s  satisfied by 

satisfying both the subgoals "Get Money", and "Select a n  

Airline", and, thus, i s  called a n  AND node. AND nodes in Figure 

3-30 are shown by connecting emanating edges with a n  ampersand 

(&I. A w o r k s p a c e  representation such as this i s  called a n  AND/OR 

gr a p h  and i s  used in m a n y  systems with production rule knowledge 

sources. 

A s  shown in Figure 3-30, the node expansion (for a goal 

d i r e c t e d  g r a p h )  continues until a satisfying set of nodes have 

b e e n  generated, all of w h i c h  are primitive. A primitive node i s  

one that poses a p r o b l e m  that i s  k n o w n  to be solvable without a 

s e a r c h  by the system. 

To sumnarize, AND/OR graphs fill the requirements for a 

w o r k s p a c e  representation: 

( 1 )  Plan: Th e  graph presents the global data structure 

and includes goals and subgoals. 
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( 2 )  &&end&: The agenda i s  the set of expanded nodes. 

I 

: The labeled links (not shown in the Figure - ' -  I ( 3 )  A I j i s t o r E  

3-30) give a reason for the existence of each entity. 

( 4 )  S o l u t  ion-: Each candidate hypothesis or goal could 

be represented w i t h  a n  AND/OR graph. 

3 . 4 . 4  BlackboardYersus-GraDh 

By comparing the AND/OR gr a p h  w i t h  the HEARSAY-Blackboard, 

one c a n  recognize that: 

( 1 )  AND/OR graphs have a m o r e  uniform structure that can 

sometimes be exploited for efficiency. 

( 2 )  The HEARSAY-Blackboard has a b e t t e r  structure if the 

p r o b l e m  decomposes into levels of representation and 

the s y s t e m  has many knowledge sources. 

3.5 -Interface 

3.5.1 .Function% nfmlnterface 

T h e  interface i s  the comnunication port between the KBS and 

the outside world. Based on the functions provided, the 

interface of a KBS c a n  b e  viewed as three different interfaces: 
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( 1 )  U s e r  Interface 

( 2 )  Knowledge Acquisition (Expert) Interface 

( 3 )  D a t a  Interface. 

T h e  u s e r  interface provides the necessary facilities for the 

user a s  a poser of problem and a consumer of results (answers and 

justifications or explanations). 

T h e  expert interface is the system’s port of knowledge 

acquisition and is used by a domain expert as the provider of 

knowledge f o r  the knowledge sources (KSs). 

T h e  external data interface is similar to that of m o s t  other 

interactive computer systems, in that i t  incorporates: 

( 1 )  Facilities for user input o f  parameter, data and 

responses to the system’s queries. 

( 2 )  The m e c h a n i s m  for locating and accessing files or data 

bases. 

M a n y  o f  the functions necessary to provide the data 

interface m a y  be drawn directly f r o m  the computer system 

environment within which the KBS functions, a n d ,  thus, they are 

not d i s c u s s e d  here. 

In t h e  remainder o f  this section, U s e r  Interface, Expert 

Interface, and Knowledge Acquisition process are discussed in 

detail. 
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3 . 5 . 2  User Interface 

3 . 5 . 2 . 1  Jnt roduc t ion 

The user interface critically affects the acceptance of a 

KBS by users of the intended domain. The users are (typically) 

neither computer scientists, nor programners. A well designed 

and properly functioning user interface not only minimizes the 

problems associated with learning any new system, but also, in 

the long run, improves system productivity by making i t  possible 

for the users to be more cooperative in problem solving 

activities [Barnett & Bernstein, 7 7 1 .  In short, a good interface- 

could make the difference between a successful KBS and 

unsuccessful one. 

The user interacts with the interface interactively in a 

jargon specific to the domain of the K B S .  The advantage of 

interactive usage is that the user provides only the necessary 

information and could request explanations of system behavior and 

results during problem solving activity. 

Besides interacting with a KBS in domain specific jargon, 

the user inputs the information (and the system outputs results, 

explanations, etc.) in some restricted variant of English-like 

natural language. Thus, the user interface acts as a natural 

language processor. Since handling natural language and all of 

its complexities i s  equivalent to solving the entire problem of 

machine understanding and natural language simulation, only a 

brief discussion of some techniques will be presented here. 
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3.5.2.2 User Interface Qaracteristics 

Besides domain specific jargon and English-like natural 

language, the user interface should possess two additional - 

characteristics: soft - failure and self - howledqe. 

( 1 )  Soft-Failure: A KBS should tolerate small or simple 

errors in a user's input. For instance, if the user's 

input consists of spelling mistakes, a KBS should not 

only inform the user, but also guide him as to what 

are acceptable responses, if not correct the errors 

itself. An example of this type o f  spelling corrector 

i s  described in [Teitleman, 7 2 1 .  

(2) Self-Knowledge: A KBS system should be able to know 

what i t  can and i t  cannot do. F o r  example, i t  should 

be able to answer user's questions like "Can you 

handle problems about X ? "  o r  "What do you know about 

Y?" A system with self-knowledge available has the 

potential to accomodate new users in a reasonable 

manner [Barnett & Bernstein, 7 7 1 .  

3.5.2.3 m- UserInDut, 

There are many techniques to implement the input side of the 

user interface. Parsing i s  one o f  the widely used techniques. 

Parsing i s  the process of "picking apart" the sentences that 

were input to the system and determine their meaning, thus 
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providing the foundation for providing an appropriate response. 

There are at least seven different strategies. 

3 . 5 . 2 . 4  Parsing Strategies 

(a) Backtrack ing Versus Parallel .Pro cessing 

Some elements in a natural language do not always have 

unique meanings. Ambiguities like these force the parser to make 

choices between multiple alternatives as it proceeds through a 

sentence. Alternatives may be dealt with all at the same time 

(called parallel processing), o r  one at time using a form of 

backtracking - backing upto a previous choice-point in the 

computation and trying again. Both these strategies require a 

significant amount o f  bookkeeping to keep track of multiple 

possibilities. 

This i s  similar to forward chaining vs. backward chaining as 

discussed in Section 3.3.4. A parser can operate from the set of 

possible sentence structures (top down), or from the words 

actually in the sentence (bottom up). 

In a strictly top down approach, a parser begins by looking 

at the rules f o r  the top level goal structure (sentence, clause, 

etc.); i t  then look. up rules for the constituents of the top 

level structure and progresses until a complete sentence 

structure i s  built u p .  
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In a strictly bottom up approach, a parser first looks at 

the rules in the granmar to combine the words of the input 

sentence into constituents of larger structures (phrases and 

clauses). These structures will be recombined t o  show that all 

input words form a legal sentence in the grarmzar. 

In both strategies discussed above, i t  is necessary to 

decide howwords and constituents will be combined (bottom up) or 

expanded (top down). There are two basic methods: fixed 

directionality and variable directionality. 

In fixed directionality, the system proceeds systematically 

in one direction (normally left to right). In variable 

directionality (also called island driving), the system starts 

anywhere and systematically looks at neighboring chunks of 

increasing size (see the discussion in Section 3.3.3.5, 

"Directionality of Control Strategies"). 

( d )  Multiple KnowledPe- 

I n  natural language processing systems, particularly in 

speech understanding systems, another strategy i s  to arrange 

knowledge into various levels (phonemic, lexical, syntactic, 

semantic, etc.), so that the parser can use relevant sets of 

facts from a variety of knowledge sources (see Section 3 . 4 . 2 ) .  
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3 . 5 . 2 . 5  ParslnP * S v s t e m s  

Various natural language processing systems deal with the 

above seven design issues in different ways. A few selected _ '  

systems are discussed within this section. 

ELIZA [Weizenbaum, 661  is a system of this type. ELIZA 

(humorously) simulates a Rogerian psychiatrist. Inputs are 

processed against a series of predefined binding the 

variables of the template to corresponding pieces of the input 

string. Inputs are matched to patterns like 

where $ 1  matches any string of words and x(i) matches any single 

word. Responses are built up by giving corresponding output 

patterns such as 

WHAT IF x(i) WERE $ ( 2 )  ? 

Given the input "Today's temperature i s  not hot", the system 

could produce the response, "What if temperature were hot?" This 

is accomplished by matching $ 1  to "Today's", x(l) to 

"temperature", and $2 to "hot". 

ELIZA and o t h e r  systems (like SIR and STUDENT) using this 

kind of matching techniques were successful as long as the domain 

and style o f  dialog i s  sufficiently constrained and the system's 



designer could incorporate appropriate templates. However, the 

method was inaxtenrible, and template matching was soon abandoned 

in favor  o #  more Pophisticated techniques [Barr b F e i g e n b a u m  

81 3. 
- .  

( b )  Transition Networks 

Perhaps the best known and widely used technique f o r  parsing 

is the augmented transition network (ATN). ATNo were first 

developed b y  Woods CWoods, 731. The concept o f  a n  ATN evolved 

from that of a finite state transition diagram, with t h e  addition 

of tests and "side effect" actions to each arc. 

Figure 3-31 shows a finite state transition diagram (FSTD). 

B o x e s  with S and E represent the initial and final staterl 

respectively. The F S T D  accepts any phrase that begins with 

"the", and ends with a noun and has a n  arbitrary number of 

adjectives in between. F o r  example t h e  FSTD shown in ttre Figure 

3-31 accepts t h e  input phrase "the pretty picture". 

n 

Figure 3-31. A Finite State Transition Diagram 
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Networks (i) Becursive W i t i ~ p  
. .  

Gramnars like the ones shown in the Figure 3-31 are 

inadequate for dealing with the complexity of natural language -.. 

representation. To increase the power of recognition, FSTD can 

be extended in a natural way to include recursion mechanisms. 

These extended FSTDs are called recursive transition networks 

(RTNS). 

Figure 3-32 shows an RTN (taken from [Barr & Feigenbaum, 

8 1 1 ) .  In this figure, NP denotes a noun phrase; PP a 

prepositional phrase; det, a determiner; prep, a preposition; 

and adj, an adjective. If the input string is "The li t t l e  boy in 

the swimsuit kicked the red ball", the above network would parse 

i t  into the following phrases: 

Np: The l i t t l e  boy in the swimsuit 

PP: in the swimsuit 

NP: the swimsuit 

Verb: kicked 

Np: the red ball 

In Figure 3-32, one can notice that any subnetwork of an RTN 

may call any other subnetwork, including itself. One can also 
. .  notice that an R T N m a y  be gpg - deterministi c in nature; that is, 

there may be more than one possible arc to be followed at a given 

point in a parse. These alternatives can be handled either by 

parallel processing o r  by backtracking, as discussed in Section 

3.5.2.3. 
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S :  

PP: 

FIGURE 3-32, A RECURSIVE TRANSITION NFTWORK 
BASED ON [BARR & FEIGENBAUM, ’811 
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Networks ( i i )  w n t e d  m s i t i q p  
. .  

An ATN i s  a n  RTN that has been extended in three ways: 

( 1 )  A s e t  of x e n i s t e r s  has been added; these c a n  be used 

to store information, such as partially formed 

derivation trees (like the two shown in the Figure 

3-32), between jumps to different networks. 

( 2 )  A r c s ,  aside f r o m  being labeled by w o r d  classes or 

syntactic constructs, c a n  have arbitrary tests 

associated with t h e m  that must be satisfied before the 

arc i s  taken. T h is makes i t  possible to enforce such 

constraints as verb agreement w i t h  the subject: for 

example, accept "he goes" but not "he go". 

( 3 )  C e r t a i n  a c t i o n s  m a y  be "attached" t o  a n  arc, to be 

executed w h e n e v e r  it i s  taken (usually to m o d i f y  the 

data structure returned). 

ATNs have b e e n  successfully used in q u e s t i o n  answering 

systems (LUNAR) [Woods, 73b], text generation systems (SHRDLU) 

[Winograd, 7 2 1 ,  and speech understanding systems ( W M )  [Wolf & 

W o o d s ,  801. 

O n e  limitation of the ATN approach i s  that the heavy 

dependence o n  syntax restricts the ability to handle 

ungranxnatical (although m e a n i n g f u l )  utterences. 



193 

There - i s  another class of methods for understanding natural 

language which do not use any explicit syntax, but rather depend 

on a semantic abstraction of the problem domain. For instance, 

such a semantic grarmrar for a system that talks about airline 

reservations could have gramnatical classes like (DESTINATION,, 

(FLIGHT,, (FLIGHT-TIME,, and s o  on. This abstraction of concepts 

along with knowledge of English key words (e.g., of) forms a 

parser. This kind of technology has the advantage of being 

efficient and easy to use in a variety of domains. I t  works well 

as long as the domain is reasonably bounded (like a front end to 

a KBS) but would not be extensible to more unrestricted areas. 

The LIFER [Hendrix, 7 7 1  and SOPHIE [Brown, et al, 8 3 1  

systems use semantic granxnar based parsers. 

3.5.2.6 D u t p w -  LQ User 

The other half o f  the user interface is responsible for 

output generation. This part is responsible f o r  (a) accepting 

the input from the user, (b) providing explanations and results 

during a problem solving activity, and (c) answering questions 

about the system itself. Of all these tasks, providing 

explanations i s  the most difficult. This is because: 

( 1 )  The explanation must be in terms of the knowledge 

chunks, problem parameters, and inference rules that 
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were used to derive 'the results: 

( 2 )  The internal representation must be translated t o  a 

- .  format suited for human understanding. 

As was discussed in Section 3 . 1 . 5 ,  the ability of a KBS to 

provide good explanations depend on the chunk size. I f  the 

knowledge chunks used are too small, the explanation is laborious 

and may not be satisfactory: on the other hand, if the chunks are 

t o o  large the explanation mechanismmay be unnatural to the user. 

Similarly, the ability to provide good explanations depends on 

the selection of relevant or crucial inference rules for solving 

the problem at hand (unless asked f o r  additional details, in 

which case the system should respond appropriately). 

. .  3 . 5 . 2 . 7  Methods nf P r o v i d i u u ~ l a n a t i m  

(a) Workspace Bepresentation 

A s  was discussed i n  Section 3 . 4 ,  a workspace representation 

offers a straightforward method for providing explanation. A 

workspace representation stores the history o f  the problem 

solving activity. The elements in a workspace representation are 

associated with the rule of inference and what rule was applied 

on other workspace elements, knowledge chunks, confidence 

factors, etc. 

The explanation mechanism can start from the element(s) of 

the workspace representing the problem solution and pick out the 
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sequence o f  events that m o v e d  the s y s t e m  f r o m  p r o b l e m  definition 

to solution. T h e  advantage of this approach is that the 

explanation m e c h a n i s m  could use all the useful information stored 

in a w o r k s p a c e  including why a particular solution w a s  selected 
- .  

a n d  w h y  others w e r e  rejected. T h e  disadvantage is that m o s t  of 

t h e  information m a y  n e v e r  be used. 

In this m e t h o d ,  the KS determines the m o s t  relevant 

information f o r  a n  explanation and a knowledge chunk can 

o p t i o n a l l y  have a n  explanation scheme. During a p r o b l e m  solving 

a c t i v i t y ,  if a knowledge chunk i s  used, the scheme (associated 

with that chunk) is instantiated in i t s  local environment to 

p r o d u c e  a n  explanation. T h e  advantages of this approach are: 

( 1 )  High-quality explanations c a n  be produced because i t  

i s  possible to take idiosyncratic situations into 

account. 

(2) T h e  explanation m e c h a n i s m  c a n  be used f o r  other 

purposes, for example, part o f  the complaint 

department for a frame (see S e c t i o n  3.2.7 "Frames"). 

T h e  disadvantage of this m e t h o d  i s  that the expert w h o  

p r o v i d e s  knowledge to the s y s t e m  m u s t  consider the m e t h o d  and 

n e c e s s i t y  o f  explaining each knowledge chunk. 
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In this m e t h o d ,  a problem i s  solved w i t hout keeping a 

h i s t o r y  in the workspace. If the user asks for a n  explanation, 

the m e t h o d  m u s t  re-solve the problem in a careful m o d e  i.e., the 

explanation m e c h a n i s m  carefully watches the inference engine 

during its re-solving activity and selects the events that are of 

likely interest. This i s  done by attaching a set of special 

d e m o n s  (see Section 3 . 2 . 3 )  that are triggered w h e n  special 

situations occur. At these points, the explanation m e c h a n i s m  can 

interrupt normal processing to perform the necessary data 

collection. 

- .  

T h e  advantage of this m e t h o d  is a possible gain o f  

efficiency if explanations are rarely requested. T h e  

disadvantage o f  this m e t h o d  is the inefficiency introduced into 

the inference engine so that demon-like execution could occur. 

3.5.3 E x p e r t  Interface 

3.5.3.1 Jnt roduc t ion 

Expert interface i s  used by a d o m a i n  expert, the provider of 

k n o w l e d g e  for a knowledge base and the s y s t e m  implementors (or 

k n o w l e d g e  engineers) w h o  are responsible for building the initial 

k n o w l e d g e  base (this interface i s  a l s o  called the l n o w l e d q e  

a c a u i s i t i o n  interface). Because of this, one c a n  assume that the 

user of the expert interface has some knowledge and awareness o f  

the structure and functions o f  the KBS. This, of course. d o e s  

. . .  
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not imply that the expert is a progranmer; rather i t  m e a n s  that 

he basically knows h o w  knowledge i s  represented (for example, by 

IF-THEN production rules) or h o w  uncertainty of knowledge i s  

handled (for example, by certainty factors). 

3.5.3.2 B a e r t  Jnterface D s k s  

The expert interface (or knowledge acquisition interface) 

has three m a j o r  tasks [Barnett & Bernstein, 771: 

( 1 )  Accepting knowledge in  external format and translating 

i t  into internal format. 

( 2 )  Validating the consistency of new and old knowledge. 

( 3 )  Storing the knowledge into the KB. 

T h i s  three step process i s  called -D - ilatiop. 

T h e  first task i s  usually handled b y  using a part of the 

input m e c h a n i s m  f r o m  the user interface w h i c h  can handle 

restricted natural language. 

T h e  second task i s  a more difficult one. T h i s  involves 

v a l i d a t i o n  of consistency, and checking for redundancy, a task 

complicated by the presence of confidence ( o r  credibility) 

factors. 

R e d u n d a n c y  c a n  b e  checked by proving that n e w  knowledge c a n  

b e  d e r i v e d  f r o m  the existing knowledge base. Inconsistency c a n  

b e  c h e c k e d  by adding the n e w  knowledge to the old knowledge and 

proving something that i s  patently false, say A & -A; if there i s  
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no inconsistency, the proof will fail; otherwise, the proof will 

succeed. - F o r  m o r e  detailed accounts of the problems of 

maintaining consistency, see [McDermott, 741. _ .  

T h e  third task, storing the n e w  knowledge into the KB is 

called -dation . This task becomes m o r e  difficult if a 

system has several knowledge sources and fact files in the KB. 

Storing is a very complex process. This i s  because the 

internal (physical) representation i s  usually a structure with 

links between chunks, and the acquisition m e c h a n i s m  must insert 

the n e w  chunk into this complex network. 

For example, in MYCIN, each production rule that concludes 

something about feature F is linked to every rule that tests F in 

its antecedent (left hand side). Thus, the insertion (as w e l l  as 

deletio n  and m o d i f i c a t i on) of knowledge chunks is a complex 

operation that involves many things such a s  confidence factors, 

conflict resolution strategies, existing knowledge base contents, 

etc. 

In th e  n e x t  s e c t i o n ,  t h e  knowledge a c q u i s t i o n  p r o c e s s ,  w h i c h  

i s  a m a j o r  bottleneck in developing KBSs, i s  described. 

OProcess  . . .  3.5.4 -led- A c a n i s i t i o n  

3.5.4.1 I p t r o d u c t  i o n  

T h e  stages involved in the KA process c a n  be characterized 

as p r o b l e m  identification, conceptualization, formalization, 
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implementation, and testing, a s  shown in F i g u r e  3-33. In 

reality, KA may not be as neat and well defined as the figure 

' suggests. 

. .  3.5.4.2 P r o b l  rn Ident 1 f ica t i o n  

T h i s  s tage is further divided and discussed below. 

i o n  and Roles . .  . .  ( a )  P a r t i c i ~ w  Identificat 

T h e  first thing that should be done before the KA process 

c a n  begin is the selection o f  participants, and definition of 

t h e i r  roles. T h i s  could m e a n  the selection of a domain expert 

a n d  a single knowledge engineer. T h e  KA process c a n  also include 

o t h e r  participants: multiple d o m a i n  experts, m u l t i p l e  knowledge 

engineers, a n d  even interdisciplinary experts. 

. .  ( b )  P r o b l e m  IdentLfication 

T h e  o b j e c t i v e  during this phase is to characterize the 

p r o b l e m  and i t s  supporting knowledge structures so that the 

development of the KB c a n  begin. Many iterations m a y  be needed 

d u r i n g  this phase because a knowledge engineer and/or domain 

expert may f i n d  that the initial problem considered i s  too large 

or unwieldy for the resources available. At the end o f  this 

p h a s e ,  both the knowledge engineer and the d o m a i n  expert m u s t  

a r r i v e  at a final, informal description they c a n  agree on for the 

p r o b l e m  identification. 
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. .  (c) B e s o u r c e  m t i f i c a t i u  

D u r i n g -  this phase, the knowledge engineer and domain expert 

must use various sources to obtain knowledge relevant to building . 

the KBS. For the d o m a i n  expert, these include textbooks, 

journals, past p r o b l e m  solving experience, etc. For the 

knowledge engineer the sources include experience o n  analogous 

problems a n d  knowledge about methods, representations, and tools 

for building KBSs. 

3.5.4.3 ConceDtualizat i o n  Stape 

D u r i n g  this stage, k e y  concepts and relations (that w e r e  

m e n t i o n e d  during the identification stage) are m a d e  explicit. 

T h e  knowledge engineer represents these concepts and relations in 

a d i a g r a m  that serves a s  a base f o r  the prototype system. Some 

o f  the questions that need to be answered before proceeding with 

the conceptualization process are: 

( 1 )  W h a t  d a t a  types a r e  available? 

(2) W h a t  i s  g i v e n  a n d  w h a t  i s  inferred? 

( 3 )  H o w  are the objects in the d o m a i n  related? 

( 4 )  C a n  you d i a g r a m  a hierarchy and label causal 

relations, s e t  inclusion, part or w h o l e  relations, 

etc.? W h a t  does i t  look like? 

( 5 )  C a n  you identify and separate the knowledge needed for 

solving a p r o b l e m  f r o m  the knowledge used to justify a 

solution? 
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This stage also involves repeated interactions between the 

knowledge engineer and the domain expert. 

3 . 5 . 4 . 4  Formalization - S t a P e  

This stage involves mapping the key concepts, subproblems, 

during and information flow characteristics isolated 

conceptualization into more formal representations based on 

various knowledge engineering tools and languages. 

During this phase, the knowledge engineer takes an active 

role, telling the domain expert about the existing tools, 

representations, and problem types that seem to match the problem 

at hand. During this phase, the knowledge engineer must evaluate 

the disadvantages of mismatches that will occur when a single 

tool i s  chosen and select the one with the least overall 

disadvantages. A t  the end o f  this phase, a s e t  of partial 

specifications describing how the problem can be represented 

within the chosen tool or framework should be completed. 

3 . 5 . 4 . 5  Imp1 ementat ion Stape 

The domain knowledge made explicit during the formalization 

stage specifies the contents of the data structures, the 

inference rules, and the control strategies. The tool o r  

representation framework chosen specifies their form. Thus the 

implementation phase involves mapping this formalized knowledge 

into the representational framework associated with the tool 
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chosen, i.e., the implementation phase involves the development 

of a prototype KBS. 

T h e  prototype KBS is implemented by using w h a t e v e r  knowledge 

engineering aids are available f o r  the chosen representation ( f o r  

example, a knowledge base editor). If the existing tools are 

inadequate and/or inappropriate, i t  m a y  be necessary to develop 

n e w  tools. 

3.5.4.6 T e s t  ing StaPe 

This stage involves evaluating the prototype s y s t e m  and the 

representational forms used to implement i t .  O n c e  the s ystem 

performs w e l l  w i t h  two or three examples, i t  s h o u l d  be tested 

with a variety o f  complex examples to determine the weaknesses in 

the knowledge base and inference structure. T h e s e  weaknesses 

should be corrected, and a revised prototype should be developed. 

T h i s  m a y  involve repeating one o r  m o r e  of the phases discussed 

above . 
F o r  a m o r e  detailed discussion o n  the knowledge acquistion 

process, see [Hayes-Roth, e t  al, 8 3 1 ,  o n  w h i c h  the above 

d i s c u s s i o n  is based. 

T h e r e  are m a n y  m a j o r  difficulties in acquiring knowledge f o r  

a KBS: 
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( 1 )  O n e  o f  the m o s t  outstanding problems i s  the 

representational mismatch, the difference between the 

w a y  a human expert expresses knowledge and the w a y  i t  

m u s t  be represented in the KBS environment. In recent 
- .  

y e a r s ,  researchers have focussed on developing KA 

tools that could decrease the representational 

mismatch. O n e  method used in some systems (example: 

ROSIE [Fain, et al, 8 1 1 )  to decrease this m i s m a t c h  i s  

t o  a l l o w  the expert to converse w i t h  the s y s t e m  in 

natural language. 

( 2 )  A n o t h e r  major  difficulty in KA is verbalization by the 

expert. I t  i s  almost always difficult for the human 

expert to describe the knowledge in a formal way. 

Therefore, in order to build a KBS i t  is n e c e s s a ry for 

the expert to rethink his m e t h o d s  and procedures. O n e  

m e t h o d  for starting this process is the protocol 

LuLd2L. 

( A  protocol study is a process in w h i c h  a n  expert i s  

g i v e n  a p r o b l e m  to solve, and the knowledge engineer 

observes and/or records the expert’s behavior o r  asks 

f o r  explanations of various steps. T h e  knowledge 

engineer t h e n  analyzes the collected information and 

tries to determine general patterns, knowledge used, 

a n d  principles of reasoning.) 
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( 3 )  O t h e r  major  difficulties in the KA process result 

because of limitations on current technology. 

Representation languages and tools used by current 

systems are limited in their expressive capabilities. 
- .  

S i m i l a r l y ,  techniques to a l l o w  systems to be 

gracefully extended are very limited. 

T h e  above mentioned problems - m i s m a t c h ,  formalization, 

expression, and extendability - all contribute to w h a t  is known 

as the knowledge acquisition bottleneck. C u r r e n t l y ,  this is one 

of the very active areas of research in building expert systems. 



Chapter 4 

KBS BUILDING TOOLS AND LANGUAGES 

4 . 1  Jntroductioq 

At the moment, construction of KBSs and experimentation with 

them are both very expensive and time consuming. Recognizing 

this, researchers have recently begun developing progranxning 

languages and tools for building KBSs. While these tools and 

languages are just coming into use and are certain to undergo 

further development, they promise to reduce significantly the. 

prograxrxning effort needed to develop a new system as well as 

modify i t  [Duda &Gashing, 8 1 1 .  

These languages and tools can be categorized into four 

different groups (based on [Hayes-Roth, et a l ,  8 3 1 ) :  

( 1 )  General purpose programning languages. 

( 2 )  Skeletal systems. 

( 3 )  General purpose representation languages. 

( 4 )  Computer-aided design tools for KBSs. 

The discussion in this chapter i s  generally based on 

[Hayes-Roth, et al, 8 3 1 .  
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Some AI programming languages have very powerful features 

and can be used to implement a system from "scratch". LISP. - . _  

developed by McCarthy in 1 9 5 8 ,  is chosen for much work in A I .  

LISP has some advanced features like: symbol manipulation, list 

processing, and recursion. These features provide a high level 

conception o f  data and control. In addition, the programner can 

be freed from certain burdens (like how to manage memory) that 

could slow down the experimental process. 

There are at least six other AI languages, that have been 

developed during the past two decades: 

PLANNER [Hewitt, 711 

CONNIVER [Sussman, e t  al, 721 

QLISP [Green, 6 9 1  

SAIL [Feldman, et al, 721 

POP-2 [Popplestone, 671 

FUZZY [Le Faivre. 771 

Except for LISP, none o f  these languages are in widespread 

use. There are two comnonly used LISP dialects, INTERLISP, 

developed at BBN and XEROX [Teitelman, 7 8 1 ,  and MACLISP, 

developed at MIT. The choice of one of them "is probably more a 

matter of personal preference and availability than of clear 

technical superiority", although advocates of MACLISP and 

INTERLISP often s e e m  to be claiming that superiority [Hayes-Roth, 
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et al, 8 3 1 .  

As was discussed earlier, the two most important components 

in a KBS are the inference engine and the knowledge base (or a 

set of rules). Any language which is chosen for construction of 

a KBS should provide facilities for both. 

Let us first consider the representation of a knowledge base 

(a body of rules). Depending on the general framework, each rule 

should satisfy a set o f  conditions (which are relevant) and 

perform a set of actions (when invoked). For example, consider 

the following statement or informal rule (refer the example in 

Section 3 . 2 . 5 )  

”Low fan belt tension causes alternator output to be low.” 

This statement can be represented as 

( I F  (CAUSE BELT-TENSION L W )  

THEN (CONSEQUENCE ALTERNATOR-OUTPUT LOW) 

1 

The above rule can b e  represented more generally and 

formally in a Backus-Naur form (BNF) a s  follows: 

<rule> i : =  ( I F  {<antecedent’) THEN {<consequent>)) 

(antecedent’ : : =  ‘associative triple, 

<consequent, : : =  <associative triple’ 

<associative triple, : :=  (<attribute> (object’ <value>) 
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w h e r e  cattribute,, <object’, and < v a l u e >  w o u l d  be domain specific 

terms. Using this type of formal rule language, a knowledge base 

(or body of r u l e s )  c a n  be constructed. 

Now let us consider the second aspect: the inference engine. 

Ideally the same IE could be used for various domains, by just 

changing the rule set. F o r  example, the following i s  a simple 

b a ckward chaining inference engine (discussed in detail in 

S e c t i o n  3 . 3 . 3 )  for the rule language given above. 

T o  test w h e t h e r  hypothesis X is true: 

if X is stored in the global data base 

then X i s  true 

else if there are any rules w h o s e  consequents 

include X 

th e n  f o r  each such rule: 

if all antecedents are true 

t h e n  add all consequents to the global d a t a  base 

and X is  t r u e  

else if the user says that X i s  true 

t h e n  X is true 

else X is false. 

N o t e  h o w  back-chaining is implemented above. Checking the 

antecedents of a rule causes the inference engine to be invoked 

recursively. 

T h e  above example and discussion i s  provided to give a 
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flavor of AI languages and no attempt is made to describe them in 

detail. A thorough introduction to some AI programning language 

features can be found in the excellent book “Artificial 

Intelligence Programning” by Chairniak, Riesbeck, and McDermott 
- . _  

[Chairniak, et al, 791. 

4 . 1 . 2  Skeletal SvstemS 

EMYCIN, EXPERT, and KAS are examples of this category. In 

these systems, domain specific knowledge is explicitly 

represented as rules in a K B ,  rather than coding in an inference 

engine. This clear separation of the KB and the IE permits the 

KB (or domain specific rules in the KB) to be replaced with 

another KB (with different domain specific rules). 

For example, EMYCIN ( f o r  Essential MYCIN) i s  the MYCIN 

system without the medical knowledge (specialized knowledge o f  

meningitis as well as some general knowledge about medicine). 

Using EMYCIN, two experimental systems were developed: PUFF 

[Fagan, et al,, 791 and SACON [Bennet & Englemore, 791. 

PUFF was built by replacing MYCIN’s infectious disease rules 

by rules for pulmonary function diagnosis and SACONwas built for 

psycho-pharmico logy. 

Even though the above mentioned systems are reported to be 

successful, building “general systems” - systems that can be 

applied to another domain merely by removing the rules for a 

given domain and substituting rules f o r  the new one - is, in 
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practice, not that simple. The following are among the problems 

that may occur [Hayes-Roth, et al, 8 3 1 :  

( 1 )  The old framework may be inappropriate to the new . 

task. This is both the most likely and most serious 

problem. 

( 2 )  The control structure embodied in the IE may not 

sufficiently match the new expert’s way of  solving 

problems. 

( 3 )  The old rule language may be inappropriate to the new 

task. 

( 4 )  There may be task specific knowledge hidden in the old 

system in unrecognized ways. 

OPS5, HEARSAY-111, RLL, and ROSIE fall into this category. 

These tools (or languages) are less constrained than skeletal 

systems, since they are not as closely tied to a particular 

framework. Thus, they allow for a wider variety of control 

structures and can be applied t o  a broader range of tasks, though 

the process of applying them may be more difficult than with 

skeletal systems. 

For example, OPS5 [Forgy, 8 0 1 ,  incorporates a general 

control and representation mechanism and i t  i s  not biased towards 
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a particular problem solving strategies or representation 

schemes. OPS5 has been used for a variety of applications in the 

area of A I  and cognitive psychology, as well as building R1, the 

expert system for configuring VAX computers [McDermott, 8 0 1 .  
- .  

In addition, OPS5 provides other facilities: the OPSS 

interpreter provides the programner with a conventional 

interactive programning environment much like that of a typical 

LISP interpreter - t o  trace and break runs, to examine the state 

of the system, to change the system in the middle of a run, and 

s o  on. 

4 . 1 . 4  b D u t e r  Aided D e s i g n  Tools fnr Build irlg K B h  

AGE [Nii & Aiello, 7 9 1  falls into this category. 

Specifically designed to allow the implementation of broader 

spectrum of KBs, AGE gives the designer (user) a set o f  a 

separate, interconnectable preprogramned modules for selecting a 

framework, implementing the KB, IE, and the data base. Thus AGE 

differs from other skeletal systems in one important dimension: 

i t  provides an environment in which the designer can choose o r  

specify a variety of knowledge representations and processing 

methods. For example, an AGE user i s  able to build and run a 

program that behaves in ways similar t o  a program built using 

EMYCIN o r  one built using HEARSAY-111. AGE also contains 

knowledge about its own facilities, procedures, a tutor subset 

(that lets the user browse online manual), and a design subset 
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(that provides online advise on the AGE itself). 

4 . 2  -Studies 

This section presents detailed description o f  three tools 

(or languages) mentioned in the previous section. They are: 

EMYCIN (skeletal system) 

HEARSAY-I11 (general purpose representation language) 

AGE (computer aided design tool) 

The discussion is primarily based on [Hayes-Roth, e t  al, 

8 3 1 ,  and the references identified with the respective systems. 

4 . 2 . 1  

4 . 2 . 1 . 1  Overv iew nf 

EMYCIN is basically a domain-independent version o f  MYCIN 

i.e., a MYCIN system without the medical knowledge. EMYCIN is a 

skeletal system f o r  developing a consultation program that can 

request data about a case and provide an interpretation or  

analysis. I t  is particularly well suited to deductive problems 

such as fault diagnosis, in which a large body of potentially 

unreliable input data (symptoms, laboratory tests) is available 

and the solution space o f  possible diagnoses can be enumerated. 

EMYCIN helps a designer build a new KB,  and thus a new KBS. 

The problem specific knowledge can be represented in MYCIN-like 

rule language and EMYCIN allows the MYCIN inference engine to be 
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applied to a n e w  KBS. This provides the n e w  KBS w i t h  MYCIN’s 

versatile explanation facility. 

In a d d i t i o n  to these, the EMYCIN system contains a KB editor 

to aid in debugging an emerging KB. All o f  the components are 
-.. 

shown schematically in Figure 4-1 ( f r o m  [Buchanan & Duda, 8 3 1 ) .  

4.2.1.2 U o w l e d p e  BeDresentat i o n  in BlXCIB 

The knowledge in RvlYCIN i s  represented as production rules 

(see S e c t i o n  3.2.5, “Production Rules”) in the following rule 

language: 

rule : := (IF < a n t e c e d e n t )  THEN <action, (ELSE < a c t i o n > ) )  

< a n t e c e d e n t >  : : =  (AND { < c o n d i t i o n > ) )  

< c o n d i t i o n )  : := (OR {‘condition,)) I 

( ( p r e d i c a t e ’  < a s s o c i a t i v e - t r i p l e > )  

<associative-triple, : : =  ( ( a t t r i b u t e )  < o b j e c t >  < v a l u e > )  

< a c t i o n >  : :=  ( { < c o n s e q u e n t > )  I {(procedure’) 

< c o n s e q u e n t >  ::= {<associative-triple> ccertainty-factor>) 

A rule links a n  antecedent to one action if the antecedent 

is true, a n d  (optionally) to another, if the antecedent i s  false. 

The antecedent i s  always the conjunction of one or m o r e  

conditions. A condition i s  either 

( 1 )  T h e  disjunction of one or m o r e  conditions or 

( 2 )  A predicate applied to a n  attribute-object-value 

triple (predicate c a n  include negation). 
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Thus, the antecedent i s  an arbitrary Boolean combination of 

predicates o f  associative triples. 

_ .  For example, one o f  the MYCIN's bacterial infection rule is: 

I F  (SAND (SAME (CNTXT INFECT PR I M A R Y - B A m E R M A )  

(BEMBF (CNTXT SITE STERILE-SITES) 

(SAME (CNTXT PORTAL GI))) 

THEN (CONCLUDE (CNIXT IDENT BACTEROIDS TALLY . 7 ) )  

In English, the antecedent of the rule (everything between 

IF and THEN) is true i f  and only if: 

( 1 )  The infection i s  primary-bacteremia, and 

(2) The s i t e  of culture i s  one o f  the sterile sites, and 

( 3 )  The suspected portal of entry o f  the organism is the 

gastrointestinal ( G I )  tract. 

The objects in the associative triples (called "contextn in 

the EMYCIN terminology) are variables corresponding to domain 

entities. They are organized into a simple hierarchy called a 

context- (Figure 4 - 2 ) .  This serves several purposes: 

( 1 )  Binding of free variables in a rule are established by 

the context in which the rule is invoked with the 

standard access to contexts which are i t s  ancestors. 
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PAT I ENT-1 

I NFECT i 0n-2 I NFECT I ON-1 

CULTURE-1 

/ 
ORGAN I SM-1 

FIGURE 4-2, A SAMPLE CONTEXT TREE 

BASED ON [DAVIS, ET AL, ‘811 
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( 2 )  Since this tree is intended to reflect the 

-relationships of objects in the domain, i t  helps 

structure the consultation in ways familiar to the 

user. 

For example, in the MYCIN domain, objects might be 

patient-1, infection-1, infection-2, culture-1, culture-2, 

culture-3, organism-1, organism-2, etc. The context tree (Figure 

4 - 2 )  would indicate that ORGANISME belong to CULTURES, CULTURES 

belong to INFEnIONS, and INFECTIONS belong to PATIENTS. Thus a 

context tree provides some of the inheritance mechanisms of a 

f r ame r e p r e s e n t a t i on. 

To acconmodate uncertainty, EMYCIN associates a certainty 

factor (see Section 3.1.6) with every attribute-object-value 

triple. This number ranges from -1 (when the triple represents a 

false assertion) through 0 (no opinion) to - 1  (the assertion is 

known to be true). Predicate such as SAME can either evaluate to 

T (true) o r  some certainty interval (such as 0 . 2  to 1)  or can be 

fuzzy-set functions that indicate a degree of truth. As in 

fuzzy-set theory, AND returns the minimum and OR returns the 

maximum of the certainty values to i t s  arguments [Zadeh, 7 5 1 .  A 

rule is considered "true" only when the final certainty is 

greater than some threshold (typically 0 . 2 ) .  and will be treated 

as "false" if its final certainty is less than another threshold 

(typically -0.2). 

The action part o f  a rule either updates (modifies) the 
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certainty of the specified consequents or evaluates a set o f  

attached procedures. In modifying the certainty, the s y s t e m  

combines: 

( 1 )  T h e  certainty o f  the antecedent. 

( 2 )  T h e  present certainty of consequent. 

( 3 )  T h e  certainty factor associated with the rule 

according to the CF formulas of Shortliffe and 

Buchanan [Shortliffe & Buchanan, 7 5 1 .  

4 . 2 . 1 . 3  mFMYCINInferenceEnPlne 

0 

EMYCIN us e s  backward chaining as a control strategy. Its 

initial goal i s  to d e t e r m i ne the value o f  a top level goal 

attribute. Subsequently, EMYCIN works on the goal o f  

establishing the value of the attribute of some object. T h i s  

process continues with a precomputed rule s e t  (whose consequents 

are known t o  bear o n  that goal) until either the value is 

established with complete certainty o r  exhausts the rule set. If 

no value can be deduced, i t  resorts to asking the user for the 

va 1 ue . 
T o  apply (or execute) a rule, E M Y C I N m u s t  first establish 

the truth of- its antecedent, which requires determining the 

certainty of each of i t s  conditions. To determine the certainty 

of each o f  i t s  conditions, the s y s t e m  (typically) has to 

establish the value o f  other attributes of objects. This m e a n s  

that the s y s t e m  sets u p  subgoals that are addressed by using the 



220  

same m e c h a n i s m  recursively. 

. . .  4.2.1.4 W C I N  Facilities 

O n e  of the m a j o r  benefits of using EMYCIN to build other 

MYCIN-like systems is i t s  (EMYCIN's) explanation facilities. I t  

a l l o w s  a u ser to examine both the reasons for the conclusions 

reached in a particular session, and its rule set in the 

knowledge base. This c a n  be done by simple comnands like "WHY" 

a n d  "m. 
In addition, as already mentioned, EMYCIN h a s  a knowledge 

base editor. T h e  KB editor checks syntactic correctness of the 

n e w  rules entered and sees that they d o  not contradict or subsume 

existing rules. A contradiction occurs w h e n  two rules with the 

same antecedents have conflicting consequents; subsumption occurs 

w h e n  the antecedent of one rule i s  a subset o f  that of another 

a n d  their consequents are the same [Hayes-Roth, et a l ,  8 3 1 .  

h 

EMYCIN also provides valuable tracing and debugging 

facilities. A n d ,  finally, libraries of t e s t  c a s e s  c a n  also be 

maintained. 

4.2.2 -SAY IIL 

HEARSAY-I11 i s  a general purpose knowledge representation 

tool. It a l s o  provides a domain-independent framework f o r  
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building KBSs. The architecture of HEARSAY-I11 is based on the 

architecture of HEARSAY-I [Reddy, et al, 7 3 1 ,  and HEARSAY-I1 

[Erman, et al, 8 0 1 ,  which are speech understanding systems 

developed at Carnegie-Mellon University under a DARPA project. 

Specifically, HEARSAY-111 uses HEARSAY-11’s concepts of modular 

knowledge sources and “blackboard” (which provides system wide 

comnunication, see Section 3 . 4 . 2 ) .  However, HEARSAY-I11 is 

specifically not a speech understanding system. 

The design goals for HEARSAY-I11 were to develop 

representation and control facilities with which a user could 

construct and experiment with a KBS for a chosen domain. Some. 

salient features of HEARSAY-I1 are: 

( 1 )  I t  supports codification of diverse sources of 

knowledge. HEARSAY-I11 is not restricted to any 

particular class of application domains, and in fact, 

supports various types of knowledge from various 

application domains. 

(2) I t  supports application of these diverse sources of 

knowledge. HEARSAY-111 allows flexible coordination 

of knowledge sources during a problem solving 

activity. 

( 3 )  I t  represents and manipulates competing solutions that 

could be constructed incrementally. 
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( 4 )  It reasons about partial solutions, i.e., HEARSAY-I11 

 upp ports the ability to reason and manipulate the 

solutions during various stages of their construction. - .  

( 5 )  I t  applies domain dependent consistency constraints to 

the competing partial solutions, which results in 

reducing the search space. 

( 6 )  It supports long-term, large-system development. In 

particular, HEARSAY-I11 supports experimentation with 

varying knowledge for the application domain and 

varying schemes for applying that knowledge. ,. 

4 . 2 . 2 . 2  -owled= ReDresen t a t i u h  -SAY - 111 

(a) TB_e Ynderlving Pelational DataBase 

HEARSAY-111 consists of a relational data base system and 

i t s  corresponding control facilities. The data base language i s  

called AP3 [Goldman, 7 8 3 ,  and i s  embedded in INTERLISP. An AP3 

data base provides strong typing on assertion, retrieval, and 

parameter passing in function calls which can be used by a user 

of HEARSAY-111 f o r  modeling in a specific domain. The HEARSAY 

blackboard and all publicly accessible HEARSAY-I11 data 

structures are represented in the AP3 data base. 

AP3 also makes available to HEARSAY-I11 applications a 

context mechanism. This context mechanism allows reasoning along 

independent paths, which may arise both from a choice among 
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several competing KSs and from a choice among several competing 

partial solutions. 

Finally, A p 3  also provides facilities for a constraint 

mechanism. Any reasoning mechanism that produces a constraint 

violation results in marking the context (in which the reasoning 

was performed) as poisoned. 

- . _  

The central conmunication medium in HEARSAY-111 is the 

"blackboard". An application program uses the blackboard as a 

repository for a domain model, for representation of partial. 

solutions, and for representation of pending activities. The 

blackboard i s  segmented into two parts: 

( 1 )  Domain blackboard 

( 2 )  Scheduling blackboard 

The i n B l a c k b U  is intended as the s i t e  of competence 

reasoning (i-e., for reasoning within the task domain), and the 

scheduling b l a c k b o a r d  is intended as the s i t e  for performance 

reasoning (i-e., for reasoning about scheduling). The user can 

further subdivide each of these blackboards. 

Blackboard units are fundamental components of the 

representations built by application programs in HEARSAY-111. 

Every unit has a structure. The structures of units are used to 

represent unresolved decisions explicitly and such sets are 

called cho i c e  sets. 
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HEARSAY-I11 provides two mechanisms for resolving the 

ambiguity b y  a choice set: 

( 1 )  Deduce-mode choose. 

( 2 )  Assume-mode choose. 

An application p r o g r a m m a y  perform a $educe - m o d e  d o o s e  w h e n  

i t  h a s  conclusive evidence that one alternative is the correct 

solution for the p r o b l e m  represented by the choice set and that 

there will be n o  desire to retract that choice based on further 

evidence. In this case the choice set is replaced by the 

alternative (their properties are m e r g e d )  in the context in which.. 

the choice i s  m a d e .  In deduce m o d e ,  the blackboard appears as if 

this choice set never existed before. 

An ass- - _choose also replaces the choice set with a 

unit that represents a m e r g e  of properties of the choice set and 

the c h o s e n  alternative. T h e  difference i s  that a n  assume m o d e  

choice m a k e s  these changes in a newly created context f r o m  the 

one i n  which the choice i s  made. The b l a c k b o a r d  structure in the 

n e w  context i s  identical to that resulting f r o m  a deduce-mode 

choice. T h e  choice s t i l l  exists in the earlier context with i t s  

structure m o d i f i e d  only to eliminate the alternative just chosen. 

In this w a y ,  if subsequent reasoning indicates that this 

alternative may not be best, i t  i s  possible to return to the 

original context and select a different alternative. 



225 

Inference- 4 . 2 . 2 . 3  HEMSAY - 111 

The key functions of generating, combining, and evaluating 

hypothetical interpretations are performed by independent - .  

programs called "knowledge sourcesn (KSs). Each KS can be 

schematized as a condition-action type production rule; i t  

reacts to blackboard changes produced by other KS executions and 

in turn produces new changes. 

To define a KS, the user provides a t r i p n e r i u  pattern, 

ediate code, and a mode. Whenever the pattern is matchable on 

the blackboard, HEARSAY-111 creates an activat ion record for the 

KS. At the point the activation record i s  created, the 

immediate code of the K S  is executed. At some subsequent time, 

the system's base schedule (see below) may c a l l  the HEARSAY-I11 

Execute action on the activation record. The result o f  this is 

that the body of K S  is run (executed) in the triggering context 

and with the pattern variables instantiated. 

Each K S  execution is indivisible; i t  runs to completion and 

is not interrupted for the execution o f  any other KS activation. 

This insulates the KS execution and simplifies the coding of the 

body; there need be no concern that during a KS execution 

anything on the blackboard will be modified except as effected by 

the KS itself. 

Scheduling 

Frequently, many KS activation records vie for execution and 
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HEARSAY-I11 is intended for use in domains in which KS scheduling 

schemes are likely to be complex and in which one might need to 

experiment freely with various schemes. 

The scheduling blackboard at the end o f  each KS execution, 

determines which KS activation to execute next. Some KSs (known 

as scheduling KSs), mag make changes on the scheduling blackboard 

to facilitate the selection of activation records. Scheduling 

KSs may respond t o  changes both on the domain blackboard and on 

the scheduling blackboard, including creation o f  activation 

records. The scheduling blackboard is the data base for solving 

the scheduling problem. 

4 . 2 . 3 . 1  Dverv iew Q€ AGE 

The following discussion is a simplified version of one 

presented in [Hayes-Roth, et al, 8 3 1 .  

AGE is a software tool specifically designed to allow the 

implementation o f  a broader spectrum o f  KBSs. AGE gives the 

designer a s e t  of separate, interconnetable, preprogramned 

modules (also known as components o r  building blocks) for 

selecting a framework, implementing the knowledge base, inference 

engine, and the data base. 

A component is a collection of LISP functions and variables 

that support conceptual, as well a s  concrete, entities. For 

example, the production - rule com~onent consists of: 



( 1 )  A rule interpreter that supports syntactic and 

semantic description of production rule 

representation, and 

( 2 )  Strategies for rule selection and execution. 

The components have been preprogramned, but the designer of 

the KBS (or user of AGE) could m o d i f y  or replace them as long a s  

the changes c o n f o r m  to the definitional constraints. 

T h e  components in AGE have been carefully selected, defined, 

and m o d u l a r l y  programned to b e  usable in various combinations. 

A n d  using different combinations makes i t  possible to construct.. 

programs that display different problem solving behaviors. 

One particular combination (or framework) i s  blackboard 

n. The other is backcha in framework. 

4.2.3.2 B l a c k b o a r d  Framework 

A blackboard-based p r o g r a m w r i t t e n  in AGE consists of three 

m a j o r  components: 

( 1 )  T h e  blackboard. 

( 2 )  T h e  knowledge base. 

(3) T h e  control. 

( a )  B l a c k b o a r d  

The blackboard concept i s  originated f r o m  the design of 

HEARSAY-11, a speech understanding s y s t e m  [Erman, et al, 801, and 
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i t  is designed to hold input data, intermediate results and 

solutions. I t  is augmented with a variety of control and 

representation concepts. Some of these augmentations include 

production rules and object-oriented representations of 

knowledge, an extended blackboard, and a scheme for generating 

and processing expectations and goals. 

The knowledge of the problem domain can be represented in 

two different ways: 

( 1 )  The description of the objects, both conceptual and 

actual. 

( 2 )  The relationships among the objects. 

The knowledge to use these facts and t h e  information on the 

blackboard is represented as a set of production rules. A set of 

related rules i s  called (in AGE terminology) knowledge sources 

(KSs 1 .  

Each production rule consists o f  a left-hand side (LHS) and 

a right-hand-side (RHS) .  The LHS specifies a s e t  of conditions 

or patterns for the applicability of the rule. The applicability 

of a rule here means that either all of the specified conditions 

must be true, or only that some need to be true. Because of the 

wide range of possibilities of defining applicability, AGE asks 

the user to define it in the form of a function t o  serve as the  
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LHS Evaluator. An example of LHS Evaluator i s  

all-conditions-must-be-true. 

T h e  RHS represents the implication to b e  drawn, under the 

situation specified in the LHS. These implications are 
- . _  

represented in the f o r m  of changes to be m a d e  to the hypothesis 

structure (a data structure that holds input data, intermediate 

results, and final results), o r  to the knowledge base. 

In AGE several components are grouped under the heading of 

control. T h e y  are as follows: 

( i )  mInDut m o n e n t :  The user has to specify the 

format and the names of the input data, and the manner 

in w h i c h  the data are to be acquired through this 

input component. 

n i t i a l i z a t i o n  ComDonent: This c ompone n t 

processes the input data and returns the name of the 

first KS to b e  invoked. 

. .  ( i i )  

( i i i )  U r n e l  U t r o L  b D o n e m :  This component 

specifies the inference m e c h a n i s m s  to b e  used 

(discussed below). 

( i v )  m ~ e t i o n  * -: T h i s  component specifies 

the condition under w h i c h  the p r o g r a m  will terminate; 

for example, the occurrence of some specified event. 
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( V I  -post - Process i q g m o n e n _ t :  This component is for 

processing after the termination of rule execution; 

for example, printing an hypothesis or printing an 

explanation. 

The primary functions of kernel control are: 

( 1 )  To select an item on the blackboard to be processed 

next (done by inference generation subcomponent), and 

( 2 )  To invoke KSs appropriate to that item and consistent. 

with the goal of the program (by focus of attention 

subcomponent). 

A more detailed description of inference generation and 

focus of attention subcomponents can be found in [Hayes-Roth. et 

al. 8 3 1 .  

Because the control mechanisms have many details that are 

potentially confusing to novice user, AGE provides two rather 

simple, prepackaged control structures called control macros. 

They are useful for event driven macro and expectation driven 

macro control. 

Control (e) Event - Driven 

Event-driven control is a two step process: 
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( 1 )  A rule modifies the hypothesis elements or UNITS data 

base and causes an event, with associated event token 

(which sumnarizes the actions to be taken by the 

rules). 

( 2 )  If the focused event name (assigned by the user) 

matches a precondition of a KS, then invoke that KS. 

Loop back to (1). 

Control (f) UDectation - Driven 

Expectation driven control is a three step process: 

( 1 )  A rule generates expectation(s). 

( 2 )  If an expectation is met, the hypothesis elements or 

UNITS are modified as specified. This action 

generates an event with an associated event token. 

( 3 )  I f  the focused event name matches a pre-condition of  a 

K S ,  that KS is invoked. Else l o o p  back to ( 1 ) .  

A more detailed description of event driven and expectation 

driven macros i s  presented in [Hayes-Roth, et al, 8 3 1 .  

. . .  4 . 2 . 3 . 3  BGE Facilltie S 

Currently AGE is designed to be usable by persons 

knowledgeable in the appropriate uses of various AI problem 

solving methods. The user has to translate a problem into an 
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appropriate framework. O n c e  a framework has been chosen, AGE 

provides a detailed specification o f  each of the components. 

T h e  AGE sy s t e m  consists of four m a j o r  subsystems: 

( a )  D e s i g n  S u b s v s t a :  The d e s i g n  subsystem guides the 

u s e r  in the design and construction of a application 

p r o g r a m  that fits a predefined framework. 

( b )  = E d i t o r  : The knowledge base editor help the user 

enter detailed domain specific information as well as 

control information for e a c h  of the components. 

( c )  InterDreter Subsvstem: T h e  interpreter subsystem 

executes the user p r o g r a m  and provides a variety of 

debugging aids. 

( d )  h o l a i n e r  Subsvstem: T h e  explainer s u b s y s t e m  provides 

a complete trace of the execution of the user program. 



Chapter 5 

APPLICATION CONSIDERATIONS 

5.1 I n t r o d u c t i o n  

T h o u g h  there exists a large amount of literature about 

existing a n d  developing KBS applications, the selection process 

I for e a c h  n e w  application requires consideration of a v a r i e t y  of 

reasons. O v e r  the years, the knowledge engineers have developed 

many heuristics or intuitions. In m a n y  w a y s ,  these are similar 

to guidelines for building other types o f  software systems. They-. 

have b e e n  divided here into three m a j o r  groups. First, a set of 

considerations that address the issues of the p r o b l e m  d o m a i n  and 

the experts and users of the system that i s  developed f o r  that 

p r o b l e m  domain. N e x t ,  are the technology considerations that 

focus o n  the availability of technology f o r  implementing a KBS. 

Finally, a r e  the considerations that determine w h e t h e r  or not the 

development environment and user environment are properly 

supportive. 

T h e  discussion i s  based on [Buchanan, 7 5 1 ,  [Barnett & 

Bernstein, 7 7 1 ,  and [Hayes-Roth, e t  al, 831. 

233 



234 

. .  5 . 2 '  Initial Considerati- 

In this section some major considerations that should be 

taken into account - before a decision to build KBS for a - ' -  

particular application is made - are discussed. 

. .  5 . 2 . 1  Task Suitabilitv 

Does the problem have a closed form solution? If a closed 

form solution exists and that can be implemented using other 

computer techniques, then KBS technology is probably not 

suitable. On the other hand, those other techniques may be 

computationally very inefficient because t h e  number of steps 

involved or because of the number of possibilties (combinatorial 

explosion) are very high. In such a case, KBS technology can be 

considered. 

I s  the problem too difficult or too easy? A task can be 

said to be "too easy", if i t  "takes only few minutes" and "too 

hard" if i t  requires "few months" [Hayes-Roth, et al, 8 3 1 .  

Though the tools and techniques to build expert systems will 

improve, presently i t  is wiser to build a system that is an 

expert in performing a task T in a domain D, than building a 

system that i s  an expert in domain D .  
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Does the task require considerable conmon sense knowledge? 

KBS are not general purpose problem solvers and no current system 

is adept at conmon sense reasoning. As such, i t  is extremely 

difficult to build a system that has expertise in several 

doma ins. 

pfExDert  . .  5 . 2 . 2  Availabilitv 

One o f  the preconditions for building a KBS is the existence 

o f  an expert (or group o f  experts) in the domain being 

considered. I f  there is no expert or no one who is recognized as 

outstanding performer f o r  the type o f  problems involved, building 

KBS in that domain is probably not worth considering. 

The expert should be willing t o  give long t e r m  comnitment 

and should become an integral part o f  the developing team. At 

the same time, he should not be expected to become an expert in 

computer science and KBS technology. Knowledge engineer should 

be willing to meet the expert at least half way. 

p,rith JJu2 prehlem? Is a kn-u w e e r  -liar . .  (c) 

The knowledge engineer should read relevent reports and talk 
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to other experts to learn as much about the problem domain as 

possible. This not only establishes a good conmunication between 

expert and knowledge engineer, but also simplifies the task o f  

identifying the problem and expressing key concepts and relations 

explicitly. 

Process 5.2.3 Knowledge Acauisitiop . . .  

There are several ways of imparting domain specific 

knowledge to the KBS. A f e w  them are discussed below: 

The knowledge engineer should have extensive discussions 

with the expert in identifying the roles of participants in the 

knowledge acquisition process, define the problem to be attacked, 

and characterize goals and objectives of building a KBS. He 

should also watch (record) the expert’s method(s) of problem 

solving; application(s) of formulas, heuristics, and the 

reduction process. This i s  known as a protocol studv. One 

advantage of this approach is the ability to separate knowledge 

from the reasoning mechanism. 

( b )  Jhoert directlv &Dart ing into h- base: 

With this apporach, the expert can directly interact with 

the KBS through a knowledge base editor, and impart knowledge 

directly into the KB without intervention from any one else. The 

assumptions are that the: 
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( 1 )  Expert is familiar with the KB editor, and 

( 2 )  Expert is able to translate his expertise into the 

(usually) restricted syntax statements, and the expert _ '  

has s ome knowledge about specific design 

specifications. 

The above process may require, initially, interaction with 

the knowledge engineer. 

TEIRESIAS is the best example for this type of approach. 

TEIRESIAS is a program that assists the expert to transfer his 

expertise to the K B .  The expert carries a dialog with TEIRESIAS.. 

in a subset of natural language [Davis & Lenat, 8 2 1 .  

With this approach a separate system could be built to 

abstract the knowledge from the observed data and experimental 

results. This approach i s  similar to one taken in META-DENDRAL, 

which could infer rules about domain from the data. 

The major  problem with this approach i s  providing the 

necessary constraints that would limit the system to generating 

only rules ( o r  knowledge) that i s  plausible within theory of  the 

domain instead of all possible ones. Those rules should, of 

course, be consistent. 

With this approch (described in [Badre, 7 3 1 1 ,  the knowledge 

acquisition mechanism should be able to read textbooks, journals, 
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etc. and extract the useful knowledge and transfer i t  into the 

KB. This approach may become feasible in the future. 

5.2.4 APreement With U .Theorv 

A n o t h e r  important factor that should b e  taken into 

consideration i s  w h e t h e r  o r  not there exists a n  underlying theory 

that i s  agreed upon by m a n y  professionals in that domain, and 

w h e t h e r  there i s  general agreement o n  w h a t  i s  a correct result or 

answer. 

I t  is highly unlikely that a KBS will be successful if 

there exists m a n y  competing or even conflicting theories for a .  

particular p r o b l e m  domain. 

In relation to some of the knowledge acquisition methods 

discussed above, one has to determine whether the expert has a 

m o d e l  in his m i n d  to solve the problem(s1. W h e n  the expert i s  

solving a problem, he should be able to express the steps, 

processes, rationale, heuristics, etc. in a reasonably orderly 

m a n n e r .  

5.2.6 U o e r t ’ s  P r i n c i ~ l e s  nf Beas- 

O n e  has to observe whether or not the expert approaches e a c h  

p r o b l e m  in a n  ad hoc m a n n e r ,  or  applies a s e t  o f  rules, 

heuristics and p r o b l e m  reduction processes that rapidly focus his 

a t t e n t i o n  on the k e y  subproblems. For a KBS to be successful, i t  
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is n e c e s s a r y  that the expert should f o l l o w  some orderly reasoning 

process w h e n  solving the problems. 

M a n y  times the expert m a y  not be expressing explicitly (or 

may not be even aware o f )  m a n y  intermediate level concepts during 

a p r o b l e m  solving activity. I t  i s  n e c e s s a r y  that these concepts 

be identified. T h i s  helps organizing the KB in m o r e  efficient 

m a n n e r  both conceptually and computationally. 

Knowledpe 
. .  5.2.8 G e n e r a l  YS, Domain Specific 

I t  is n e c e s s a ry to separate general knowledge f r o m  domain 

specific knowledge. T h i s  supports transparency and the 

incremental development of the system. 

N o n e  of the existing KBSs are intended for non-professionals 

of the d o m a i n  the s y s t e m w a s  developed f o r .  I t  is u n l i k e l y in 

the n e a r  future that systems will be developed that could be used 

by non-professionals and still have h i g h  performance. Therefore 

i t  is n e c e s s a ry for the user of the KBS to be proficient in the 

field, understand the underlying theory, be able to converse with 

the expert in the jargon of the field, and confront significant 

problems within the domain in his daily activities. 
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As was mentioned few t i m e s  in this report, the power of a 

KBS derives from its ability to reason plausibly under uncertain 

conditions (incomplete or inexact data) and there is no guarantee 

that the system will always produce a "correct" solution under 

those conditions. I t  could produce only a reasonable or 

plausible result. For a KBS to be successful, i t  is necessary 

that the intended users could accept such reasonable or plausible 

results along with their explanations. 

SuDDort 
. .  5 . 2 . 1 0  U a n t  i c i ~ a  t ed 

I s  the domain dynamic? By this, i t  is meant whether the 

problems that users try to solve, though within the domain, are 

constantly shifting in unpredictable ways. Any KBS should be 

built with the provision for expanding its K B ,  but to accomnodate 

drastic shifts may be quite difficult. 

5 . 2 . 1 1  Cost versus Benefits 

Building a KBS is expensive and time consuming. The 

problems that are solved by KBSs must be useful, and solutions 

should be reliable to the users. The time spent by the user 

(professional in the domain) to solve a problem using a KBS must 

be worth the effort. 

Another aspect o f  usefulness of a KBS is related to data 

gathering and recomnended actions. A KBS that can help reduce 
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the cost o f  the information gathering process and that can 

provide solutions with less ( o r  low quality) input will be very 

useful to the users. 

This section discusses some of the issues that relate to the 

design and implementation f r o m  a technological view point. 

5.3.1 Build ingthe-Svstsm 

Development of a prototype system is a very important step 

in construction of a KBS. The main intent of this exercise is to 

test whether the proposed method will work. If not, it mag 

indicate a re-exminiation of the design o r  the basic underlying 

ideas. The prototype KB can be implemented by using whatever 

knowledge engineering aids are available for the chosen 

representation (intelligent editors, etc). 

Even if the prototype systemworks from the beginning to the 

end, i t  does not guarantee that the final KBS will do as well 

across the spectrum of problems i t  was designed for, but i t  will 

indicate that the approach is reasonable. 

5.3.2 -Size 

The design of the data structures and procedures should 

reflect as accurately as possible the expert’s conceptualization 

o f  the problem domain. This not only minimizes the effort needed 
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for the translation, but also helps in removing errors and 

improving the system. This is not to suggest that the KBS should 

mimick (or simulate) the expert’s problem solving approach: 

however, that the expert should be a part of the process and the 
- . _  

system should benefit from expert’s heuristic knowledge and the 

informal style of reasoning the expert uses. 

5.3.3 w e s e n t a t  ion nf Knowledee 

The method for representing knowledge should be chosen 

carefully. Many of the successful KBSs use simple production 

rule representation. Inventing new representational techniques. 

for a new application area may increase the risk o f  failure, 

unless, of course, the technique is an clear extension of a well 

known one. This is not to suggest that new representational 

techniques should not be explored, but to warn that such 

techniques should be rigorously tested first before they can be 

considered to build a large scale KBSs. 

5 . 3 . 4  Inference Engine 

In the beginning, at least, a simple inference engine should 

be built. This not only permits experimentation with the 

knowledge representation methods sooner, but also makes knowledge 

much more accessible. Some of the better known problem solving 

methods include heuristic search, deductive inference from rules, 

pattern matching. 

For a very complex system with multiple levels of 
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abstractions and multiple representations of knowledge (like 

speech understanding systems, e.g., HEARSAY-111, different 

methods may be required to solve the problem at different levels. 

5 . 3 . 5  bkm Knowled- 

If the domain is very large and complex, i t  i s  increasingly 

difficult for anyone to stay "on top" of everything. Therefore, 

if the reasoning process and control can be incorporated in the 

inference engine, then the systemwill be relatively simple and 

easy to implement. 

5.3.6 Procedural Knowledge 

I t  is important to ensure that knowledge i s  not embedded in 

code (procedures) in the inference engine. All the knowledge 

should be incorporated in the system's knowledge base. This type 

of error in the design will reduce the flexibility of the system 

or force major modifications as the system grows. 

QLKnowledPe-aUsers  . .  
5 . 3 . 7  Addition 

If the users of a KBS add knowledge, in contrast to data (as 

may be necessary for solving certain problems), to knowledge 

base, the KBS will be difficult to design and implement - 

particularly the knowledge acquisition interface and associated 

facilities for validating the consistency o f  the added knowledge 

as well as the control mechanism in the inference engine. 
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. . .  5 . 3 . 8  m i b i -  

A KBS should be designed to grow in various ways from its 

initial conception and implementation. The areas for improvement - . -  

include: 

( 1 )  Increasing knowledge base. 

( 2 )  Increasing inferential capabilities. 

( 3 )  Improving the flexibility of user interface. 

( 4 )  Increasing the overall reliability and performance o f  

the system by refining the inferential capability and 

learning from errors of the past. 

5 . 3 . 9  W w l e d s  Benresentat ion Tools 

A tool for building a KBS should be as specialized as 

possible. This is because the more general the representation 

and control, the more difficult and inefficient is the 

representation of  any particular chunk of knowledge. 

( b )  Apnropriateness nfLiuzTool  

The appropriateness of a tool can be tested by building a 

s m a l l  prototype system. Even though the actual development of 

the KBS may take many months of effort, i t  may be possible to 

test the effectiveness of a particular tool through the intensive 

efforts of the expert and knowledge engineer in a much shorter 
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period of time. 

. . .  
( c Ac c e s s i b 1 1 i ty 

A tool that is still maintaned by the developer and is 

proven to be robust should be selected. The selection of an old 

tool that is not currently mainatined by the developer may prove 

to be difficult to get running initially. 

. . .  ( d )  ~ l a n a t i P n / I n t e r a c t i o n P a c i l i t i e s  

If the tool selected has very good explanation and 

interaction facilities, i t  not only improves the speed of the KBS. 

development, but also results in a more intelligible system. 

(e) Problem mars cterist ics YSL Tool Featu r e s  

The selection of a tool is directly influenced by the 

problem characteristics, which include size of search space, the 

form of data (continuous, time-varying, uncertain, inconsistent, 

etc.), and the structure of the problem (incomplete knowledge, 

interacting subproblems, etc.). 

The tool selection also depends on the solution 

characteristics, which include the type of search (exhaustive, 

heuristic search, etc.), the representation of knowledge 

(production rules, frames, etc.), and the form of control 

(parallel processing of subproblems, top down refinement, etc.). 
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5.3.10 D e s i =  pf T o o l s  fpr B u i  ldinPKBSs 

If the existing tools or aids are inadequate to build KBSs, 

the knowledge engineer must develop n e w  ones. T h e  design of such 

a tool involves m a n y  considerations including generality, 

completeness, language features, data base structure, and control 

methods. 

- .  

(a) G e n e r a l i t v  

G e n e r a l i t y  depends on the range of application areas for 

w h i c h  the tool i s  appropriate. The designers w o u l d  like to 

d e v e l o p  a general purpose tool that could b e  used for a w i d e  

range of problems, but the tradeoff here i s  efficiency of d e s i g n  

and development versus power of the tool for each application. 

( b )  m l e t e n e s z  

The completeness of the tool depends o n  the number and 

usefulness of the features included in the tool. For example, 

systems like EMYCIN, EXPERT, and KAS provide the largest number 

o f  special support features. These features contribute to the 

power and efficiency of the system w i t h i n  the restricted 

a p p l i c a t i o n  domain. 

P r o v i d i n g  high-level language facilities f o r  the tool speeds 

up the development process and contributes to extensibility of 
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the system. T h e  language should be both readable to the experts 

(i.e., the experts should be able to read and understand without 

any previous training) and manageable by the knowledge engineers 

(i.e., the knowledge engineer should be able to m o d i f y  or augment 

the rules with only modest training). 

.,. 

O t h e r  useful features to incorporate into tools are 

facilities for explanation and user interaction facilities. 

T h e s e  facilities speed u p  the prototype s y s t e m  development. 

( e )  D a t a  u e s e n t a t i o n  

A n o t h e r  important feature of the tool i s  the control 

structure o f  the data base. The tool should have basic data 

representation schemes that i s  a s  general as possible keeping the 

representation task reasonably easy (constrained). I f  i t  is too 

r e s t rictive, e v e n  simple problems will be unsolvable. On the 

other hand,  if i t  provides too m u c h  f r e e d o m  and very l i t t l e  

g u i d a n c e ,  complex problems will see m  overly complex. 

T h e  power, generality, and accessibility o f  the control 

m e c h a n i s m  are important aspects of a n y  KBS building tool. The 

representation of the procedural knowledge i s  d i r e c t l y  affected 

by t h e  control structure. F o r  example, the use o f  iteration, 

recursion, backward chaining, etc. affects decisions regarding 
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representation of procedural knowledge. A rigid and constrained 

control strycture simplifies and speeds up the development of 

interaction and explanation facilities in the KBS. I t  also 

contributes to incremental development of the system, providing a 

h i g h e r  degree of m o d u l a r i t y  than could be achieved f r o m  a m o r e  

general control mechanism. 

- .  

5.4 Enyi r w n  t a 1 Cons i de ra t i ons 

In the last two sections, initial considerations and 

technology considerations w e r e  discussed. In this section, the 

operational and developmental environments for KBSs are 

discussed. 

5.4.1 Interactive I(Bs 

To b e  m o s t  useful to its users, a KBS i s  n e c e s s a r y  that i t  

i s  interactive. E v e n  though i t  is possible to build a KBS that 

runs in a batch processing environment, i t  i s  u nlikely that i t  

will b e  successful; "a batch system just cannot provide helpful, 

r a p i d  feedback and imnediate error recovery, for example, f r o m  a 

simple typing error" [Buchanan, 7 5 1 .  So, the basic design 

philosophy for a KBS should b e  that of a user oriented, 

interactive system. 

5.4.2 Interact ive Develooment-ent 

An interactive development environment will speed up the 
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implementation process - particularly when acquiring knowledge 

f r o m  the expert and transferring i t  into knowledge base, and 

validating the n e w  knowledge. T h u s ,  i t  i s  necessary that the 

development environment for the KBS be a n  interactive one. 

5.4.3 L o c a l  -Environment 

A KBS should be able to access the local operating system 

a n d  various builtin explanation and interaction facilities of the 

external computer environment. T h i s  fact w a s  particularly 

illustrated during the development of RITA and ROSIE. S u c h  a n  

interaction w i t h  the external environment extends the power and. 

g e n e r a l i t y  of a KBS, since i t  enables the s y s t e m  to control other 

jobs in parallel, and accessing t h e m  like subroutines. F o r  

instance, this KBS c a n  perform complex mathematical calculation 

in FORTRAN or access external data bases via computer networks 

[Hayes-Roth, et al, 831. 



Chapter 6 

CONCLUSIONS 

The technology of KBSs has emerged from AI research. Many 

KBSs have been built in the past decade in a wide spectrum of 

application areas, from medicine and chemistry to geology and 

business to computer configuration and project risk assessment. 

The DENDRAL system has been in regular use by university and 

industrial chemists throughout this country. The PROSPE-R 

system has been applied to many practical problems of the US 

Geological Survey and US Department of Energy. Digital Equipment 

Corporation is using the R1 system to configure their computers. 

Still, KBSs have not achieved the status of being comnonly 

known o r  comnonly understood like many other computer-based 

sy s t ems. 

There appears to be, as noted by Buchanan and Duda, at least 

three main motivations for building KBSs, apart from research 

purposes [Buchanan & Duda, 8 3 1 :  

( a )  Replication and Distribution o f  Expertise 

An expert becomes one only after years o f  education, 

training, and experience. By building KBSs, one can provide 

many (electronic) copies of an expert’s knowledge (or expertise), 

s o  i t  can be consulted even if the expert is not personally 

available because of geographical location, because of 

retirement, o r  for whatever reason. 
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C k )  U n i o n  of Experkise 

i n  some d o m a i n s )  t h e r e  may b e  n o  s i n g l e  s p e c t i , i s t  w h o s e  

e x p e r t i s e  s p a n s  t h e  e n t i r e  prcjlcn domain. KESs c a ?  ? - ' : v i d e l  i n  

i jne p l a c ~ ~  t h e  u n i o n  o f  th.1 e x p e r t i s e  t ~ +  ssvsral 5 3 5 c i a i i s t s .  

For i n S t a n c J 1  PRAS ( F r o j e c t  R i s K  A s s e s ~ m e n ~  S q s t s r n ) ,  b e i n g  

d e v e l o p e d  b y  H i t a c h i ,  is ar! r x p e r t  5 ; ~ s k e m  t h a t  c a n  b e  used f o r  

p 1. ar;n i n 9, c r j  n s tr u c t i on, a n d  m a i n t e n a n c e  oi? la : -ge s c a l e  

c o n s t r u c t i o n  p r o j e c t s .  11; usss e x p e r t i s e  f r o m  e n g i n e e r i n g ,  

design, a n d  c o n s t r u c t i o n  s p e c i a l i s t s  C F e i 3 e n b a u n  3 r  !+lcCorduck, 

83 2 .  

i c )  G o c v m e n t a t i o n  

KI3Ss c a n  be u s e d  t o  p rov i l i e  a c l e a r  r e c o r d  o f  t h e  bes t  

k n c w l e d g e  a v a i l a b l e  f o r  handling a s p e c i i ? i c  p r o b l 3 m  a n d  t h i s  

r e c o r d  c a n  b e  u s e d  f a r  t r a i n i n g .  

3 l J i l d i n g  K B S s  i s  very  e x p e n s i v e  a n d  t i m o  c s n s u m i n g .  

C o n s t r u c t i o n  s o m e t i m e s  t a k e s  a s  much as 10 t o  2 5  p e r s o n - y e a r s  a n d  

c o s t s  as m u c h  as 8 1  t o  %2 millicn. B u t  t h e  general level O S  

a c c o n p i i s h m e n t  i s  h i g h  encugh t o  mak.e i t  w o r t h w h - l e .  For 

i n s t a n c p ,  9 3 1  I n t e r n a t i o n a l  ( w i t h  the US G e o l o g i c a l  S u r - ~ e y i  b u i l t  

an expe r ' ;  s q s t e m ,  PROSPECTOR, f o r  a d v i s i n g  d u r i n g  the g ~ o ~ z e s s  o f  

fizld e x p i o r a t i o n  f o r  m i n e r a l s .  I n  1982, t h e  expe ' r t  i y s t g m  was 

1 ~ 5 e d  b q  zi company e x p l o r i n g  f o r  m i n i n g  m o l q b d e n u m  i n  t h e  

! & t ~ h i n g t o n  S t a t e  C a s c a d e  M o u n t a i n s l  a n d  a f i n d  waz made. T h e  

v a l u e  o f  i t  has  b e e n  variously e s t i m a t e d  at s e v e r a l  m i l l i o n  t a  





- C h a p t e r  i 

P 0 TE IJT I A L  FU T UF E R E SEAR C i-i +F; 2 ,A3 

K n o w l e d g e  a c q t ~ i s i t i o n  <:.A) 1.3 i;ne 0-i' t; i?e t3f2st  ~1 - 1 Z i : ~ i t  and 

time c a n s u r i i n g  p r o c e s s  i n  b u i l d i n g  PJ3S.z. T h e  knowLeCg..- 5 a s e  i n  

DENCIRAL, f o r  i n s t a n c e )  was o r i s i n a i l y  "custom c r a f t e d '  a?;c i s r g ~  

p a r t s  o f  t h e  s y s t e m  w e r e  r e w r i t t e n  a + 9 w  t i m e s  3 s  Z n s w l e d g e  b a s e  

c h a n g e d .  L a t s r  on, h i g h l y  s t y l i z e d  ~ T Q C ~ ~ : J I - F I . S  +fist were 

c i s p e n d e n t  onLq o n  g l o b a l  p a r s m e t e r s  were  a t t e n i p t - e d .  . z t i ? l  t h e  

v - -. programmers u e ~ e  r e q v i r e d  t o  W r i t s  new p r o c e d u r e s .  , e , - f 5  l a t e r !  

+ i n a l l y ,  t h e  k n o w l e d g e  0 9  mas5 spectrometrq wss c r l i . F i e c  i n  

production r u l e s .  

In l a t e r  sys t ems ,  a f r a m e w o r k  i n  w h i c h  t h e  voc3bulary and 

s y n t a x  f o r  t h e  k n o w l e d g e  b a s e  a r e  f i x e d  i s  I n i t i a l l y  zevalsped. 

N e w  k n c w l e d g e  i s  f i l l e d  (scmetimes f a r c e d !  i n t o  t h i s  ? ranrework  

t h u s  s p e e d i n g  'JP t h e  HA p r o c e s s  c o n s i d e ~ a b l y .  T h e  f t ~ ~ w i ~ ? c i g e  

e n g i n e e r  i s  s t i l l  required t o  i n t e r a c t  and e x p l a i n  t h s  p r r f g ~ m ' s  

f r a n e w o r k  t c  t h e  e x p e r t .  He i s  s t i l l  r e s p o n s i b l e  for translating 

* h e  e x p e r t ' s  problem s o l v i n g  k n c w l e d g e  i n t o  t h e  C ? a m e w c i r k .  T h u s ,  

d e s p i t e  s e v e r a l  c o n c e n t r a t e d  e f f o r t s ,  t ~ e  K A  procss; . :  . ; t i l l  

r e n l a i n s  a b o t t l a n e c k .  



An e x p e r t  builds the Gncwleitrje base  p a r t l : ~  f r o m  past 

an induction program could build a knovleujge base ir;r =P expert 

. .  -,ystem in a similar way. A n  induction p r s g r a m  : ~ * > i c h  c ~ n d s  

considerable basic knowledge o f  the domain. In ; a c t r  'some 

prctotype machine learning programs airesdy exist b u t  n o n e  of 

t h e m  can be used .For  automatic knowledge acquisition in building 

KBSs. However, m a n q  prototype s y 5 t e m s  point t a  f u t u r s  research 

in this direction. 

Ultimately, it would be desirable to h a v e  a p r o : j r a n  which 

c a n  acquire knowledge directlq f r o m  t e x t b o o k s ,  J O U ~ T ! ~ ~ S ,  etc. 

CRadre, 731. This process requires much ~ O T S  s,apnisti,:stion than 

language understanding progrsms posses I ;odaql incl:Jding t h e  

ability to view and understand diagrams. 

i b )  HDS Suildincl Tools 

Though it is reasonablq clear w h e r s  K E S  kzchno!~:,~:.; can be 

and cannot be  sed^ thert.  is n o  general t h e c r , 4  o r  ?- r l .mework  to 

guarantee t h a t  a selected application will b e  j u c z e s s + ~ - ! l .  Hcw t o  
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( c )  E x p l a n a t i o n  

T h e  5 u c t e s s  ot? 3 K B S  d e p e n d s ,  p a r t  ia 1 l y  , an t h e i r  

a c c e p t a b i l i t y  b y  t h e  v5ersj w h i c h  i n  t u r r ;  s i l l  b e  ~ z \ l u e r ; ~ d d  b y  

t h e  K B S ' s  e x p l a n a t i o n  f a c i l i t i e s .  T h e  US ST^ ? r e  ( t ! ~ p i c 3 l i y !  n o t  

c o m p u t e r  p r o f e s s i o n a l s  a n d  h e n c s  c a n n o t  b e  z x p e c t t d  T O  know t h e  

e n t i r e  s y s t e m .  The  U S ~ T S  use a KES a +  an intelligent a s s i s t a n t  

and t a k e  a d v i s e  f o r  t h e i r  p r o b l e m s .  They  w i l l  .xsKe s o m e  

d e c i s i o n s  based o n  t h a t  a d v i s e .  I n  many c a s e s ,  t h e y  w ; . I l  b e  h e l d  

r e s p o n s i b l e  f o r  t h e i r  actions. Natzrall::, t h e y  u a n t  t: kncu a n d  

u n d e r s t a n d  the r a t i o n a l  basis f G T  t h e  sqsten'; i e c : : ~ . o n s  

CBilchanan, 82-1. 

. .  

One k i n d  ol' i n t e r a c t i v e  e x p l a n a t i o n  i.: s i m p 1 . r  q u e s t i o n  

a n s : d e r j , n g  as d e s c r i b e d  i n  C S c s t t ,  e t  a i ,  773. Bc;? J L ; . ~ ' :  3 n c ; i i e r i n g  

questions a b o u t  a k n o w i e d g e  base (kno2:rn as 5'2 s t a t i c  ~ ~ - u a r i ~ )  i s  

n c t  e n o u g h  i n  g i v i n g  t h e  users  t h e  i n f o r m a t i o r  t h e y  ; : sed .  I n  



I n  t h e  p a s t  d e c a d e ,  manq &BSs h a v e  b e e n  b u i i t  and 5ome o f  

t h e m  a r e  mov ing  f r o m  a c o m f o r t a b l e  r e s e a r c p .  a n d  . d e v e l o p m e n t  

e n v i r o n m e n t  i n t : ,  t h e  n a r k e t ? l a c e .  CENERAL; t1.4CSYMkj .5vd VCLGEN 

a l l  are r o u t i n e l y  u s e d  b y  l i s e r l i  who S r e  n o t  c o n n ~ r t z i  t o  t h e  

d e s i g n e r s  o f  t h e  s y s t e m .  There:'orsl t h e  d e - e l o p e r s  Z T S  i x p e c t e d  

t a  p r o v i d e  some o b j e c t i v e  d e m a n s t r a t i o n  t h a t  ? h e  s y ~ % - . n  per .Forms  

3s w e l l  as t h e y  c l a i n .  

E x i s t i n g  t e c h n i q u e s  for e v a l u a t i n g  t h e  KESs 3 7 . 2  f e w  a n d  

p r i m i t i v e .  Much m o r s  e f f o r t  has  b e e n  d e v o t e d  t o  d s s i g n i n g  a n d  

c o n s t r u c t i n g  KBSs t h a n  t o  m e a s u , r i n l ;  t h e i r  r e s u ? % i r r g  p s : - fg r ( i l ance .  

T h e r e  is n o  t o n ~ e n s u s  a b o u t  t row tr, e v a ! u a t e  K3S+ <:2r w h a n  o r  

w n y ) .  

The  c r i t e r i a  l i k e  c u r r e C t n e s s I  e i f i c i e n c q ,  C T  f - i s n d l i n e s s  

t h a t ;  are u s e d  t o  e v a l u a t e  a t h z r  c o m p u t e r - b a s e d  sysr; .rns  c a n  b e  



I t  i s  hoped that, i n  t h e  f u t u r - e ~  rn3re s t x ~ n t i o n  wiil Si? 

d i r e c t e d  towards t h e  issue.: O F  e v a l u a t i o n .  

l e i  Parallel Proczssina 

A s  K B S s  become m o r e  complex a n d  t h e i r  k n o w l e d g e  b a s e +  grow 

i n  s i z e ,  or,e n e e d s  t o  f i n d  m e t h o d s  f n r  i n c r e s s i n g  ~ " i i c i e n c y .  

One way t o  i m p r o v e  efficiency :s t o  s a i . ; e  c u b p - c b l s m c  in 

parallel. Some problem5 r e q u i r e  d i s t r i b u t e d  c o n t r o l  to i m p r o v e  

t h e  r e l i a b i l i t y  o +  t h e  o v e r a i l  system. Verq 1 : t t l e  e x p e r i e n c s  

e x i s t s  i n  t k i - s  d i r e c t i o n .  

O n e  w a y  t a  i m p r o v e  t h e  p ? r F q r n a n c e  o f  d Ki3S is  il;r i t  t o  

l e a r n  from i t s  p a s t   experience^ t h e  way  human oxpert: d o .  A n y  
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k i n d  o f  learning still requires special systems. I t  is desirable 

f o r  every KBS to benefit f r o m  its past experience. 

M a i n t a i n i n g  a large knowledge base is a s  difficult a s  

building one. In some domains w h e r e  n o  closed f o r m  solution 

e x i s t s ,  the knowledge o f  a n  expert (along w i t h  techniques) may 

change. In m e d i c i n e ,  for instance, n e w  microbiological agents 

a r e  discovered continually as w e l l  a s  n e w  drugs to treat them. 

N e w  techniques need to be developed to ease the maintenance of 

k n o w l e d g e  bases. 3 
(h) B b s t r a c t i o u  d Hierarchies 

M a n y  KBSs represent and use abstractions and hierarchies. 

But there is no m e c h a n i s m  to compare the various techniques to 

understand their strengths and weaknesses. 

With the constant innovations and improvements in computer 

h a r d w a r e  that have been taking place in the past two decades, one 

c a n  expect to see "portable" expert systems, PC-based expert 

systems, etc. in not too distant future. 

PRECEDING PAGE BLANK NOT FILMED 
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Appendix A 

A CASE STUDY- MYCIN 

MYCIN is medical consulting system that was developed at 

Stanford in 1 9 7 6 .  A brief overview of MYCIN is presented in this 

appendix. The material covered here is a condensation of 

[Shortliffe, 7 6 1  and [Buchanan & Shortliffe, 8 4 1 .  

MYCIN is a knowledge based interactive computer system to 

assist physicians who are not experts in prescribing 

antimicrobial infections o f  the blood (bacteremia). 

-f 

An antimicrobial agent is any drug designed to kill bacteria 

o r  to arrest their growth. Thus, MYCIN assists in the selection 

o f  an agent (or combination o f  agents) for use in treating a 

patient with a bacterial infection. 

The name MYCIN is taken from the comnon suffix shared by 

several of the antimicrobial agents like clindamycin, 

erythromycin, gentamycin, kanamycin, and vancomycin. I t  reflects 

the central concern of the program, namely the selection of an 

appropriate therapeutic regimen for a patient with a bacterial 

infection. 

2 6 0  
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The p r o b l e m  o f  therapy selection a n d  recomnendation for a n  

infectious -disease i s  difficult and complex. First, the 

physician m u s t  decide w h e t h e r  the patient has a significant 

bacterial infection requiring treatment. I f  there is significant 

disease, the o r g a n i s m m u s t  be identified. T o  do this, one must 

obtain a specimen o f  the infection for culturing, analysis, and 

identification by a laboratory. This i s  a time consumitlg 

process. A n d ,  in m a n y  cases, the infection is serious enough 

that treatment m u s t  be begun before all o f  the analyses can be 

completed. T h e r e f o r e ,  any recomnended therapy must be based on 

incomplete information. T o  further complicate m a t t e r s ,  the most? 

effective drug (or a s e t  of dr-ugs) against the suspected or- 

identified o r g a n i s m  m a y  be totally inapporpriate for the specific 

patient because o f  age or medical conditions and problems. Thus, 

any s y s t e m  o r  consulting physician must be aware of all of these 

complexities if proper advice i s  to be rendered in each specific 

case. MYCIN has been designed to cope w i t h  just such 

complexities and interrelationships among the m a n y  variables and 

to provide a physician with advise that is proper f o r  each 

individual patient. 

T h o u g h  the p r o b l e m  i s  q u i t e  complex, the d o m a i n  is well 

bounded. MYCIN requires knowledge related only to infectious 

diseases, and knowledge related to experience with various 

infectious organisms in terms of resistance to specific drugs, 

and knowledge of symptoms related to specific infections. 

MYCIN i s  intended to be used by physicians. T h e  dialog that 
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i t  c a r r i e s  on with the user is in the jargon of medicine and 

specifically that of infectious diseases, laboratory procedures, 

infectious organisms, drugs, etc. T h u s ,  a user of MYCIN is 

expected to be a competent medical practitioner. 

MYCIN’s knowledge base contains several knowledge sources - 

production rules, clinical parameters, special functions, 

procedures for therapy selection and patient data base. 

”t A . 2 . 1  Bearesentat i o n  ef Rules 

T h e  200  (production) rules currently in the MYCIN system 

consist of a PREMISE, ACTION, and sometimes a n  ELSE clause. 

E v e r y  rule has a name of the f o r m  ”RULE ###” ,  w h e r e  ”###” is a 

three digit number. The rules are stored as LISP data structures 

in accordance with the following Backus-Naur F o r m  (BNF) 

d e s c r i p t i o n  (only a partial description i s  g i v e n  here: a complete 

d e s c r i p t i o n  c a n  be found in [Shortliffe, 7 6 1 ) :  

< rule > : :=  < p r e m i s e ’ < a c t i o n ’  I < p r e m i s e ’ c a c t i o n ’ < e l s e )  

< p r e m i s e )  : : =  (SANDccondition’ . . .< condition)) 
< c o n d i t i o n ’  : := ( c f u n c l > < c o n t e x t ’ < p a r a m e t e r ’ )  I 

( c f u n c 2 > < c o n t e x t ’ < p a r a m e t e r ’ c v a l u e ’ )  I 

( e  special-func’<arguments’ ) I 

( S O R < c o n d i t i o n >  . . .<  condition’) 
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T h e  PRHMISE of a rule consists of a conjunction of 

conditions,- each of w h i c h  must hold for the indicated ACTION to 

be taken. Negations of conditions are handled by the individual 

predicates ( < f u n c l >  and Cfunc2,) and therefore d o  not require a 

SNOT function to complement the Boolean function SAND and $OR. 

If the PREMISE of a rule is k n o w n  to be false, the conclusion or 

action indicated by the ELSE clause i s  taken. If the truth of 

the PREMISE cannot be ascertained, o r  the PREMISE is false but no 

ELSE co n d i t i o n  exists, the rule is simply ignored. In addition, 

the s t r e n g t h  of e a c h  rule's inference is specified by certainty 

factor (CF) in the range -1 to +l. CF's are discussed in t h q  

next section. 

~ , _  

A . 2 . 2  G n t  ext Tree 

A l t h o u g h  i t  is c o m n o n  to describe a d i a g n o s i s as a n  

inference based on attributes of the patient, MYCIN's decisions 

m u s t  n e c e s s a r i l y  involve not only the patient but also the 

cultures that have b e e n  grown, organisms isolated, and d r u g s  that 

have b e e n  administered. E a c h  o f  these i s  termed a "context" o f  

the program's reasoning. 

MYCIN currently k n o w s  about 10 different context types: 

CURCULS - a current culture f r o m w h i c h  organisms w e r e  
isolated 

CURDRUGS - a n  antimicrobial agent currently being 
administered to a patient 

CURORGS - a n  o r g a n i s m  isolated f r o m  a current culture 
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OPDRGS - an antimicrobial agent administered to the 
patient during a recent operative procedure 

OPERS - an operative procedure which the patient 
has undergone 

PERSON - the patient himself 

POSSTHER - a therapy being considered for 
reconmendation 

PRIORCULS - a culture obtained in the past 

PRIORDRGS - an antimicrobial agent administered to 
the patient previously 

PRIORORGS - an organism isolated from a prior culture 

These context types (except for PERSON) may be instantiateq 

more than once during any given run o f  the consultation program.- 

Some may not be created at all i f  they do not apply to the given 

patient. However, each time a context t r e e  is instantiated, i t  

is given a unique name. For example, CULTURE-1 is the first 

CURCUL and ORGANISM-1 is the first CURORG. Subsequent CURCLS or 

PRIORCULS are called CULTURE-2, CULTURE-3, etc. 

The context types instantiated during a run of the 

consultation program are arranged hierarchically in a data 

structure termed the "context tree". One such tree i s  shown in 

Figure A-1. The context types o f  each instantiated context is 

shown in parentheses besides its names. Each node in the context 

tree is called context and i s  created as an instantiation of a 

context type. 
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PATI ENT-1 (PERSON) 

ORGAN I SM-1 ORGAN I SM-2 
(CURORG) (CURORG) 

I 

FIGURE A-1, SAMPLE CONTFXT TREE 
BASED ON [BUCHANAN 8 SHORTLIFFE, %+I 
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This sample context tree corresponds to a patient f r o m w h o m  

two c u r r e n t - c u l t u r e s  and one prior culture w e r e  obtained. One 

o r g a n i s m  w a s  isolated f r o m  each of the current cultures, but the 

patient i s  being treated (with two drugs) for only one of the 

current organisms. Furthermore, two organisms w e r e  grown from 

the prior culture but therapy has included a recent operative 

procedure during w h i c h  the patient w a s  treated with a n  

antimicrobial agent. 

- .  

A . 2 . 3  C a t e ~ o r i z a t  i u & U  

7 T h e  200 rules currently used by MYCIN are not explicitly 

linked in a decision tree or reasoning network. T h i s  feature 

adheres to the designer’s decision to keep t h e  s y s t e m  knowledge I 

m o d u l a r  and manipulable. However, rules are subject to 

I c a t e g o r i z a t i o n  in accordance w i t h  the context - types for w h i c h  

they are appropriately invoked. For example, some rules deal 

w i t h  organisms, some with cultures, and s t i l l  others deal solely ~ 

with the patient himself. MYCIN’s current rule categories are as 

follows: 

( 1 )  CULRULES - Rules that m a y  be applied to any culture. 

( 2 )  ClTRCULRULES - Rules that m a y  only be applied to current 
I 
I 

cultures. I 

( 3 )  CURORGRULES - Rules that m a y  b e  applied only to current 
organisms . I I 

( 4 )  DRGRULES - Rules that may be applied to any 
antimicrobial agent that has been 
administered to combat a specific 
organism. 
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( 5 )  OPRULES - Rules that may be applied to operative 
procedures. 

- .  ( 6 )  ORDERRULES - Rules that are used to order the list of 
possible therapeutic reconmendations. 

( 7 )  ORGRULES - Rules that m a y  be applied to any organism. 

( 8 )  PATRULES - Rules that m a y  be applied to the patient. 

( 9 )  PDRGRULES - Rules that m a y  be applied to drugs g i v e n  
to combat prior organisms. 

( 1 0 )  PRCULRUES - Rules that may be applied only to prior 
cultures. 

(11) PRORGRUES - Rules that may be applied only to 
isolated organisms f r o m  prior cultures. 

(12) THERULES - Rules that store information regarding 7 
drugs of choice. 

E v e r y  rule in the MYCIN system belongs to o n e ,  and only one, 

of these categories. 

Parameters A.2.4 Clinical . .  

T h e  s y s t e m  also contains a c o l l e c t i on of clinical 

p a r a m e t ers, represented as cattribute, o b j e c t ,  value, triples. A 

clinical parameter i s  a characteristic of one of the contexts in 

the context tree, i.e., the name of the patient, the site of a 

culture, the m o r p h o l o g y  o f  a n  o r g a n ism, the dose of the drug, 

etc. All su c h  attributes are termed as "clinical parameters". 

T h e  clinical parameters known to MYCIN are categorized in 

accordance with the context to which they apply. T h e s e  

categories include: 
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( 1 )  PROP-CUL - T h o s e  clinical parameters that are 
attributes (e.g., s i t e  of the 
culture, m e t h o d  of collection). 

( 2 )  PROP-DRG - Those clinical parameters that are 
attributes of administered drugs 
(e.g., n a m e  of the d r u g ,  duration 
o f  administration) 

( 3 )  PROP-OP - T h o s e  clinical parameters that are 
attributes of operative procedures 
(e.g., the cavity, if any, opened 
during the procedure) 

( 4 )  PROP-ORG - T h o s e  clinical parameters that are 
attributes of organisms (e.g., 
identity, g r a m  stain, morphology) 

( 5 )  PROP-PT - T h o s e  clinical parameters that are 
attributes of the patient (e.g., 
name, sex, age, allergies, 
diagnoses) 

( 6 )  PROP-THER- T h o s e  clinical parameters that are 
attributes of therapies being 
considered f o r  reconmendation 
(e.g., recomnended dosage, pre- 
scribing name) 

C u r r e n t l y  there are 65 clinical parameters k n o w n  to MYCIN. 

Ea c h  of the parameters has a certainty factor reflecting the 

system's "belief" that the value is correct ( a n  associated set of 

properties that i s  used during consideration of the parameter f o r  

a given context). This f o r m a l i s m  is necessary because, unlike 

domains in w h i c h  objects either have or d o  not have some 

attribute, in m e d i c a l  diagnosis and treatment there is often 

uncertainty regarding attributes such as the significance of the 

disease, the efficacy o f  a treatment o r  the diagnosis itself. 
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In addition to certainty factor, each parameter i s  

a s s o c i a t e d  with a set of properties that is used during 

consideration of that parameter f o r  a g i v e n  context. These 

properties specify such things as the: 

- Range of expected values a property may have. 

- T h e  sentence to transmit to the user w h e n  requesting 

data f r o m  him. 

- T h e  l i s t  of rules w h o s e  PREMISES reference the 

par ame t e r . 
- T h e  list o f  rules w h o s e  ACTION or ELSE clauses permit 

a conclusion to be m a d e  regarding the parameter, etc. ? 

O n l y  those properties that are relevant to each parameter 

are associated with i t .  H o w e v e r ,  properly specifying h o w  the 

parameter is to be represented in E n g l i s h  i s  m a n d a t o r y  for all. 

A.2.5 

Additional information i s  contained in s i m p l e  l i s t s  that 

simplify references to variables and optimize knowledge storage 

by avoiding unnecessary duplication. T h e s e  lists contain such 

t h i n g s  as the names of organisms k n o w n  to the s y s t e m  and the 

n a m e s  o f  n o r m a l l y  sterile and non-sterile sites (called 

STERILESITES and NONSTERILESITES, respectively) f r o m  w h i c h  

organisms are isolated. 
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In conjunction w i t h  a set of four special functions, MYCIN 

uses knowledge tables to permit a single rule to accomplish a 

task that w o u l d  otherwise require several rules. A knowledge 

table contains a comprehensive record of certain clinical 

parameters plus the values they take on under various 

circumstances. For example, one of M Y C I N ’ s  knowledge tables 

itemizes the gramstain, m o r p h o l o g y ,  and aerobicity f o r  every 

bacterial g e n u s  known to the system. 

- .  

A.  2 . 7  SFec ial ized T u n c  t i o n s  

T h e  efficient use of knowledge tables requires the existence 

of four specialized functions. These functions help to recomnend 

the apparent first choice drug for the therapy. 

This constitutes the m a j o r i t y  o f  MYCIN’s knowledge base, 

w h i c h  permits the s y s t e m  to comprehend the nature of a n  infection 

w i t h o u t  complete information about the o r g a n i s m  involved, and 

provide the physician w i t h  proper advise regarding treatment 

under the circumstances. This organization and structure, along 

with the w a y  the knowledge i s  used, facilitates the system’s 

a b i l i t y  to e x p l a i n  its actions and advice. 

A . 3  MyCIN ’ s  InferenceEngine 

MYCIN’s inference engine i s  domain independent in the sense 

that none of the knowledge required to provide advice about 
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bacteremia is embedded in it. T h u s ,  additional rules concerning 

infectious disease may readily be added, or a n e w  knowledge base 

could be substituted to provide therapeutic advice about a - .  

different d o m a i n  o f  infections. As discssed in Section A . l ,  

MYCIN’s ta s k  involves a four stage decision problem: 

( 1 )  Decide w h i c h  organisms, i f  a n y ,  are causing 

significant disease. 

( 2 )  Determine the likely identity of the significant 

organism. 

( 3 )  D e c i d e  w h i c h  drugs are potentially useful. 

( 4 )  Select the best drug o r  drugs. 

S t e p  1 and step 2 are closely interrelated, since I 
d e t e r m i n a t i o n  o f  a n  organism’s significance m a y  w e l l  depend upon 

i t s  p r e s u m e d  identity. Furthermore, MYCIN m u s t  consider the 

possibility that the patient has a n  infection w i t h  a n  organism 

not specifically mentioned by the user (for example, a n  occult 

abscess s u g g e s t e d  by historical information or s u b t l e  physical 

I 

~ 

, 

I 
findings). Finally, if MYCIN decides that there is n o  I 

significant infection requiring antimicrobial therapy, i t  should 

skip steps 3 and 4, advising the user that n o  treatment is 

thought to be necessary. 

, 

A consultation session with MYCIN results f r o m  a simple two 

step procedure: 
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( 1 )  C r e a t e  the patient context as the top node in the 

c-ontext tree. 

( 2 )  Attempt to apply the goal rule to the newly created - .  

patient context. 

W h e n  MYCIN first tries to evaluate the PREMISE of the goal 

rules, the first condition requires that i t  k n o w w h e t h e r  there is 

a n  o r g a n i s m  that requires therapy, MYCIN then reasons b a c h a r d s  

in a m a n n e r  that m a y  be informally paraphrased as follows: 

How d o  I decide w h e t h e r  there i s  a n  o r g a n i s m  requiring 
therapy? W e l l ,  RULE090 tells m e  that organisms associated 
with significant disease require therapy. But I don’t e v en 
h a v e  any organisms in the context tree yet, so I’d b e t t e r f  
a s k  first if there are any organisms and if there are I ’ l l  
t r y  to a p p l y  RULE090 to each of them. However, the PREMISE- 
o f  RULE090 requires that I k n o w w h e t h e r  the organism is 
significant. I have a bunch of rules f o r  m a k i n g  this 
d e c i s i o n  (RULE038 RULE042 RULE044 RULE108 RULE122). For 
example, RULE038 tells m e  that if the o r g a n i s m  came f r o m  a 
sterile site i t  i s  probably significant. Unfortunately I 
don’t h a v e  a n y  rules for inferring the site o f  a culture, 
however, so I guess I ’ l l  have to a s k  the user for this 
information w h e n  I need i t  . . .  

T h i s  goal oriented approach to rule invocation and question 

selection is automated via two interrelated procedures, a MINITOR 

that analyzes rules, and a FINDOUT m e c h a n i s m  that searches for 

data needed by the MINITOR. Th e s e  two procedures or components 

constitute M Y c I N ’ s  inference engine or control structure. 

MlNITOR’s function (Figure A-2) is to determine whether the 

conditions stated in the PREMISE of a rule are true. To do  so, 

it c o n s i d e r s  e a c h  condition o f  the PREMISE at hand, first 

determining w h e t h e r  i t  has all of the n e cessary information to 
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make the determination. If it requires information, it calls 

FINIXlUT to obtain what is needed. FI"T (Figure A - 3 )  first 

determines whether the needed information is laboratory data. I f  

i t  is, i t  asks the physician for i t .  I f  the physician cannot 

provide i t ,  FINDOUT retrieves the l i s t  of rules that may aid in 

deducing the information and calls mNITOR to evaluate the rules. 

When the process completes, control i s  returned to MINITOR. If 

the information needed is not laboratory data, FINDOUT retrieves 

the list of rules that may aid in deducing the needed information 

and calls hXlNITOR to evaluate the rules. If the deductive 

process of applying the rules (backward from a goal to the d a t v  

o r  information needed) cannot provide the needed information, the- 

physician is asked to provide i t .  In either case, control is 

returned to rvONITOR. Given the information that is provided by 

FINDOUT or that was already available, MINITOR determines whether 

the entire PREMISE is true. I f  i t  i s  not, and there i s  no ELSE 

clause, the rule i s  rejected. I f  the PREMISE i s  true or  the ELSE 

clause is invoked, the conclusion stated in the ACXION of the 

rule or in the ELSE clause is added to the ongoing record of the 

consultation, and the process completes. Note that there is a 

recursive relationship between MINITOR and FI"T, such that, so 

long as any information is needed to evaluate a PREMISE, or rules 

are required to develop the needed information, the two 

components are in a recursively dependent and oscillating 

relationship until the very first rule invoked, the "goal-rule", 

- .  

7 
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is satisfied. I n  the process o f  evaluating the rules, a great 

deal of related and necessary information and data are developed 

and retained in various tables and structures in the workspace. - .  

They serve two purposes: 

( 1 )  They prevent wasted effort that would be required to 

redevelop information that has already been obtained, 

and to prevent the system f r o m  endlessly chasing its 

tail. 

( 2 )  They provide the necessary history required f o r  the 

-7 explanations that may be requested by the user. 

In addition t o  having certainty factors (CFs) for the rules 

and the clinical parameters in the knowledge base, the physician, 

when asked for either laboratory data or o t h e r  information that 

the system itself cannot deduce, may attach a CF to his input. 

The default, if the physician does not provide a CF, i s  assumed 

to be +l. The certainty factors are the key to permitting IVlYCIN 

to perform inexact reasoning. The rationale, mathematics, and 

applications are thoroughly treated in [Shortliffe, 7 6 1 .  The 

presentation here is very simplified. 

A . 4  Certain= Factors 

A certainty factor (CF) is a number between -1  and + 1  that 

reflects the degree o f  belief in a hypothesis. Positive CFs 
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indicate that there i s  evidence that the hypothesis is valid; the 

larger the CF, the greater the degree of belief. A CF = 1 

indicates that the hypothesis i s  known to be correct. A negative 

CF indicates that the hypothesis i s  invalid; CF = -1 m e a n s  that 

the hypothesis has been effectively disproven. A CF = 0 m e a n s  

either that there is n o  evidence regarding the hypothesis o r  that 

the evidence is equally balanced. T h e  hypotheses in the system 

are statements regarding values o f  clinical parameters for the 

- ~ .  

nodes in the context tree. To properly perform, M Y C I N m u s t  deal 

w i t h  competing hypotheses regarding the value of its clinical 

parameters. To do  s o ,  i t  stores the list of competing values a n 9  

their C F s  for each node in the context tree. Positive and- 

negative C F s  are accumulated separately as m e a s u r e s  of belief 

(MB) an d  m e a s u r e s  of disbelief (M)) and added to f o r m  a resultant 

CF for a clinical parameter. The CF of a conclusion i s  the 

product o f  the CF of  the rule that generated the conclusion and 

the tally of the C F s  of the clinical parameters that w e r e  used in 

substantiating the conclusion. W h e n  a second rule s u p p o r t s  the 

s a m e  conclusion, the CFs are combined by z = x + y(l-x), w h e r e  x 

is the CF of the first supporting rule, y is the CF of the 

succeeding rule and z i s  the resultant CF f o r  the conclusion. 

T h e  C F s  permit the s y s t e m  to report findings to the physician 

w i t h  varying degrees of certainty such a s ,  "There is strongly 

suggestive evidence that .... , "There is suggestive evidence 

that ....", "There is w e a k l y  suggestive evidence that .... , etc. 
U 

99 
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T h e  topmost tree is always the patient. Branches are added 

successively to the existing nodes as FINDOUT discovers a need - '  

for t h e m  in attempting to obtain requested information for 

MINITOR. T h u s ,  given only the patient, when MINITOR requests 

information f r o m  FINDOUT about organisms in order to evaluate the 

first condition in the Premise of the goal-rule, FINDOUT 

discovers that i t  cannot get organism information without having 

information about cultures. Thus, context(s) concerning 

cultures(s) are spawned f r o m  the patient node, f r o m  w h i c h  

eventually are spawned contexts for the organisms identified by "1 

the cultures. For  those organisms deemed significant, links 

attach to context nodes about the relevant drugs for treating 

these organisms. T h u s ,  the context tree i s  t a i l o r e d  for each 

patient as the s y s t e m  progresses through i t s  reasoning process. 

A . 6  MYCIN's -tions I 

One o f  the primary design consideration t a k e n  in MYCIN w a s  

the requirement that the system be able to explain i t s  decisions 

if physicians w e r e  going to accept i t .  S e l e c t i n g  rules as the 

representation o f  the system's knowledge greatly facilitated the 

implementation of this capability. T h e  physician using the 

system enters the explanation subsystem automatically w h e n  the 

consultation phase i s  completed, or he m a y  enter i t  upon d e m a nd 

during the consultation session at any point at w h i c h  the s y s t e m  
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requests input from him. In the latter case, he can input "WHY" 

to request a detailed answer about the question just asked of him 

- .  o r  he can input "QA" to enter the general question-answering 

explanation subsystem to explore the decisions and other aspects 

of the consultation up to the point of divergence. 

The explanation provides several options to the physician. 

Since the system automatically enters this mode at the end of  the 

consultation, the physician may simply input "STOP", which 

terminates the system. The explanation system offers several 

options to the user and are shown below: 

HELP Prints this list. 

EQ Explain a specific question asked o f  the 
physician during the consultation - each has a 
sequence number, which must accompany the EQ 
request . 

IQ Is a prefix f o r  a question about information 
acquired by the system during the consultation. 
The question is phrased in the limited English 
that MYCIN can handle. 

NOPREFIX A general question i s  assumed being asked about 
the content o f  MYCIN's rules. 

PR Requests a particular rule be printed and must be 
followed by the rule number. 

STOP Exit from explanation system. 

RA Permits entry to the rule acquisition module for 
recognized experts. 

An Example: Suppose a physician wants explanation for question 

4 8 .  Then he inputs "EQ 4 8 " .  To which the systemwould respond: 
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QUESTION 48 WAS ASKED IN ORDER TO FIND OUT THE PATIENT'S DEGREE 

OF SICKNESS ( O N A  SCALE OF 4 )  IN AN EFFORT TO EXECUTE RULE068. 

He may then optionally input "PR68" or "WHAT IS RULE068" to see 

what exactly w a s  being sought and why. 
- .  

A.7 'interfaces 

N C I N  has two interfaces. O n e  is for the using physician, 

through w h i c h  he m a y  answer questions posed by the s y s t e m  and ask 

questions of i t ;  the other is a knowledge-acquisition interface 

accessible only to experts recognized as s u c h  by the system. 

1 All of the questions asked of the user have been carefully 

designed not to require the language-understanding component. 

Thus, instead of asking, W h a t  i s  the infectious disease 

diagnosis for the patient?" it a s k s ,  "Is there evidence that the 

p a t i e n t  has a meningitis?" To w h i c h  only a simple "yes" or "no" 

i s  required. 

T h e  knowledge-acquisition interface, o n  t h e  other hand, 

permits the expert to input a new rule i n  stylized English, with 

prompting to obtain the rule in the proper sequence: Premise 

first, condition by condition, followed by the Action, and then 

an E l s e  clause if one is required. T h e  s y s t e m  then translates 

the rule into internal form, reordering the conditions of the 

Premise if necessary, according to a set of criteria developed to 

improve the rule-evaluation process. I t  t h e n  retranslates the 

rule into English and requests that the expert decide w h e t h e r  the 
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r e w r i t t e n  version w a s  the one intended. If not, the expert m a y  

m o d i f y  selected parts and is not required to restate the entire 

rule unless there has been a gross misunderstanding. 

T h e  same m e c h a n i s m  is used w h e n  an expert w a n t s  to correct 

or m o d i f y  an existing rule. In a l l  cases, w h e n  a n e w  or 

corrected rule has been approved by the expert, the system checks 

to see w h e t h e r  the rule i s  consistent w i t h  the existing rule s e t .  

If the n e w  or modified rule subsumes or i s  subsumed by a n  

existing rule, i t  i s  not readily discoverable, and no test i s  

m a d e  for this condition. If a rule i s  discovered to b e  in 

conflict w i t h  a n  existing rule, i t  i s  rejected. 7 

- . .  

A.8 E v a l u a t  i o n  mf MXCD 

MYCIN’s performance has been externally evaluated. There 

have been different empirical studies of MYCIN’s performance, 

each simpler than the previous but all of t h e m  time consuming. 

The last one w a s  reported in [Yu, e t  a l ,  7 9 1 .  The following 

d i s c u s s i o n  i s  based o n  [Yu, et a l ,  7 9 1  and [Buchanan, 821. 

T e n  meningitis cases w e r e  selected randomly and their 

descriptions w e r e  presented to seven Stanford physicians and one 

student. T h e y  w e r e  asked to give their therapy recomnendations 

for each case. T h o s e  reconmendations along w i t h  MYCIN’s 

reconmendations for each case and actual therapy w e r e  collected 

in 10 x 10 m a t r i x  - ten cases each with ten reconmendations. The 

a panel of experts not at Stanford, w e r e  asked to give each I 
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reconmendation a zero if, in his opinion, it was unacceptable f o r  

the case and one if the recomnendation w a s  acceptable. They did 

not k n o w ,  w h i c h ,  if any, reconxnendation came f r o m  a computer. 

T h e  results a r e  shown in the T a b l e  A-1.  
- .  

T a b l e  A-1. Ratings of Antimicrobial Selection 
by 8 Experts o n  10 Meningitis Cases* 

[Buchanan & Shortliffe, 8 4 1  

MYCIN 5 2  (65) 
Facul ty-1 5 0  (62.5) 
Facul ty-2 4 8  (60) 
Infectious Disease 

F e l l o w  4 8  (60) 
F a c u  1 ty-3 46 (57.5) 
A c t u a l  T h e r a p y  46 ( 5 7 . 5 )  

Resident 36 (45) 
F a  cu 1 tg-5 34 (42.5) 
Student 24 ( 3 0 . 5 )  

F a c u  1 ty-4 44 ( 5 5 )  

_---_______________-------------------------------- 

1 

* Perfect Score = 80; Unacceptable T h e r a p y  = 0; 
Equivalent o r  Acceptable Alternate = 1. 

As c a n  be seen f r o m  the table, the difference between 

MYCIN’s score and the score of the infectious disease experts at 

S t a n f o r d  is not significant. T h u s ,  the designers of MYCIN c l a i m  

to h a v e  shown that M Y C I N ’ s  recomnendations w e r e  viewed by outside 

e x p e r t s  to be a s  good a s  the reconmendations of the local 

experts, and all o f  those better than the reconmendations of 

physicians (and the student) w h o  are not m e n i n g i t i s  experts. 
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Additional useful reference related to MYCIN are: 

[Shortliffe, 7 6 1 ,  [Yu, e t  a l ,  791, [Buchanan, 8 2 1 ,  and [Buchanan 

& Shortliffe, 841. 
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LIST OF EXPERT SYSTEMS I 

- .  

The following list of expert systems is based on [Michie, 8 4 1 .  

AGE Know1 edge Provides guidance on 
Engineering building expert systems 

and a set o f  tools for 
doing s o .  

AM 

AL/X 

Knowledge Generates new mathe- 
Engineering matical formulas, terms, 

etc. 

Knowledge A domain-independent 
Engineering development of MYCIN 

and PROSPECTOR 
usable for developing 
rule-based consultation 
programs for many fields. 

CASNJZT Medicine 

CENTAUR M e  d i c i ne 

CRIB 

Long-term management 
o f  glaucoma. 

Interprets pulmonary 
function test measure- 
ments from patients with 
lung disorders. 

Fault Diagnosis of faults in 
Diagnosis computer hardware 

and software. 

CRYSALIS Science Infers the structure 
of a protein from a 
map of electron density 
derived from x-ray 
crystallographic data 

DART Engineering Diagnosing hardware 
faults in computer 
systems. 

[Nii & 
Aiello, 791  

[Davis & 
Lenat, 8 2 1  

[Reiter, 8 1 1  

[Weiss, 811  

[Aikins, 8 0 1  

[Addis, 801 

[Feigenbaum & 
Engelmore, 

77 1 

Under 
development 
at Stanford 

-4 
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Identification of [Feigenbaum, 
organic compounds by et al, 711 
analysis of m a s s  
spec t rog r a m .  

DENDRAL Science 

W C I N  [V a n  M e l l e ,  
et al, 811 

Knowledge 
Engineering 

A domain- independent 
version of MYCIN, 
Usable for developing 
rule-based consultation 
programs for m a n y  fields. 

EXPERT Knowledge 
Engineering 

[Weiss & 
Kulikowski, 

791 

[McDe rmo t t , 
821 

[Stefik, 781 

A system for designing 
and building m o d e l s  for 
consultation. 

EXSEL 

GA 1 

Computing Configuring the 
V U 1 7 8 0  computer system. 

Science Infers DNA structures 
f r o m  pieces (segments) 
of structures. 

GAMVW 

GU I DON 

Science Interpreting gamna ray 
activation spectra. 

[Barstow, 791 

Knowledge 
Eng i n e  e r ing 
( E d u c ation) 

Case-method tutor 
designed to improve a 
student’s ability to 
diagnose complex problems 
in m e d i c i n e  and science. 

HEACMED M e d i c i n e  Psychopharmacology 
advisor (constructed 
using MYCIN). 

[Heiser, 
et al, 781 

INTERNIST M e d i c i n e  Diagnosis in internal 
medicine. 

[Pople, 771 

MACSYMA Ma t h e m a t i c s  
A d v i s o r  

An automated consultant 
for MACSyMA ( a n  
algebraic m a n i p u l a t i o n  
system). 

[Genesereth, 

[Moses, 751 
781 

[Chandra- 
sekaran, 791 

MIX M e  d i c i ne Performs diagnoses 
related to cholestasis. 
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NAME OF APPLICATION BRIEF 
SYSTEM OR AREA DESCRIPTION 
PROJECT 

REFERENCES 

META- Science Induces rules for [Buchanan & 
DENDRAL determining molecular Feigenbaum, 

structure from mass 7 8 1  
spectrometry data. 

MYCIN 

Science 

Medicine 

ONCOC IN Medicine 

PROS - 
PECM)R 

Geology 

Provides intelligent [Mart in, 
advise to a molecular et al, 7 7 1  
geneticist on the planning 
o f  experiments involving 
the manipulation of DNA. 

Diagnoses certain [Shortliffe, 
infectious diseases and 7 6  1 
recomnends appropriate 
drug treatment. -4 

Assists in the manage- [Shortliffe, 
ment of cancer patients et al, 8 1 1  
on chemotherapy protocols 
for forms of lymphoma. 

Aids geologists in [Hart & Duda, 
evaluating mineral 78  1 
sites for potential 
deposits. 

PSYCO Knowledge Experimental production [ F o x  & 
Engineering system compiler. Rector, 8 2 1  
(Medicine) 

PUFF Medicine Analyses results o f  [Kunz, et al, 
pulmonary function t e s t s  7 8 1  
for evidence o f  possible 
pulmonary function 
disorder. 

R l  Knowledge A domain independent [McDermott, 
Engineering system for production 8 0 1  
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e.. 

RITA Knowledge 
Engineering 

RLL 

SACON 

SECS 

su/x 

Knowledge 
Engineering 

Engineering 

Science 

Engineering 

TEIRESIAS M e d i c i n e  

UNITS Knowledge 
Engineering 

VLS I E n g  ine e r ing 

M e  d i c i n e  V M  

Provides the user with [Anderson h 
a language for defining Gi 1 logly, 
intelligent interfaces 761 
to external data systems. 

Provides the user w i t h  
a flexible set of 
facilities as a tool 
for building his own 
knowledge represen- 
tation language. 

Advises structural 
engineers in using the 
structural analysis 
program MARC. 

Proposes schemes for 
synthesizing stated 
organic compounds. 

Forms and updates 
hypotheses about 
location, velocity, etc. 
of objects f r o m  primary 
signal data (spectra). 

Knowledge acquisition 
program used with MYCIN. 

Interactive language 
providing general- 
purpose facilities for 
knowledge representation. 
U s e d  for M)LGEN plus 
other small applications. 

[Greiner & 
Lenat, 801 

[Bennett & 
Engelmore, 

79 I 

[Wipke, 
et al, 771 

[Nii & 
F e  igenbaum, 

78 I 
[Nii, et al, 

821 

[Davis & 
Lenat, 8 2 1  

[Stefik, 801 

Assistance in the d e s i g n  U n d e r  
of very large scale development 
integrated circuits. at Stanford 

Provides diagnostic [Fagan, 801 
and therapeutic suggestions 
for critical care o f  
patients needing mechanical 
assistance with breathing. 



Appendix C 

FIFTH GENERATION PROJECT 

As w a s  m e n t i o n e d  in the beginning of this thesis, in the 

past decade, there had been a m a j o r  shift in AI research. I t  w a s  

f r o m  a search for broad, general laws of thinking toward a n  

appreciation of specific knowledge - facts, experiential 

knowledge, a n d  h o w  to use knowledge - as the central issue in 

intelligent behavior. In addition to this shift, in recent 

years, there has been a great deal o f  discussion on the growing 

need for a n e w  generation of computers. In 1981, a research 
-4 

project k n o w n  a s  "Fifth G e n e r a t i o n  Computer Systems" w a s  started 

in J a p a n  to further the research and development of the next 

generation o f  computers. T h e  Japanese believe that the computers 

of the next decade will be used increasingly for non-numeric d a t a  

processing s u c h  as symbol manipulation and applied AI (KBSs) 

[Moto-oka & Stone, 8 4 1 .  This appendix provides a brief 

introduction to the Fifth Generation Project, its organization, 

i t s  f u n d i n g ,  various phases of the project, and its m a j o r  goals. 

T h e  presentation in this appendix i s  based o n  the book "The F i f t h  

Generation" by Edward F e i g e n b a u m  and Pamela M c C o r d u c k  [Feigenbaum 

& M c C o r d u c k ,  831, and o n  [McCorduck, 831. 

2 8 8  
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In  October 1 9 8 1 ,  Japan’s Ministry of International Trade and 

Industry (MITI) sponsored a conference to announce a new national 

project. Alongside national projects in supercomputing and 

robotics, there would be an effort to develop a new generation 

(the fifth, by their reckoning) of computers. 

The Fifth Generation is a consortium o f  eight firms 

(Fujitsu, Hitachi, Nippon Electric Corporation, Mitsubishi, 

Matsushita, Oki, Sharp, and Toshiba) and two national 

laboratories (the government-owned Nippon Telephone and 

Te 1 egraph’ s M u s  ashi no Laboratories, and MITI ’ s O W n  

Electrotechnical Laboratory). Approximately forty hand-pickeh 

researchers from each of the firms and laboratories gathered 

under one roof in Tokyo in April 1 9 8 2  at the new Institute for 

New Generation Computer Technology ( ICQT) .  Their director is 

Kazuhiro Fuchi, who came from the Electrotechnical Laboratory and 

was the intellectual spirit behind the Fifth Generation Project. 

At the present all funds come from MITI. Although a 

national project is normally a partnership of government and 

private funds, the firms participating the Fifth Generation 

Project argued that they could not afford to support such a 

high-risk project and supply top researchers t o o .  MITI agreed, 

and is underwriting the project for the first three years. 

IcoT’s second-year budget i s  $ 1 3 . 6  million, up significantly over 

the first year’s budget of $ 2  million. Across the ten-year 

period o f  the project, assuming typical contributions from the 

firms, the total budget will probably approach $ 2 0 0  million. 



The fifth generation of computers will not be traditional 

computers. - Instead, they will be symbolic inference machines, 

capable of reasoning their way swiftly through massive amounts of 

knowledge and data. They will be computers that can learn, 

associate, make inferences, make decisions, and otherwise behave 

in ways usually considered the exclusive province of human 

reason. Even their name signals the change: knowledge 

information processing systems, or KIPS. KIPS will be the 

engines of the information society; s m a l l ,  robust and 

inexpensive. They will appear as universal appliances, as 

conmonplace and easy t o  use as the telephone. -4 

The project’s ten-year plan is divided into three successive- 

stages. The first three-year stage is devoted to the development 

of a prototype machine, a personal PROLOG workstation that will 

have a knowledge base comparable to present-day expert systems 

(thousands of rules and thousands of objects) but whose reasoning 

powers will be a million logical inferences per second (LIPS), an 

order of m a g n i t u d e  improvement over software-based PROLOG 

implementations on today’s comnon mainframe computers such as the 

DEC 2 0 6 0 .  The prototype should be finished sometime this year, 

with commercial products due a year or s o  later. This first 

phase is Japan’s opportunity t o  c l i m b  the learning curve, and is 

explicitly planned for that purpose. 

The second four-year stage is for engineering 

experimentation, prototyping, continuing experiments at 

significant applications, and the initial experiments at systems 
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integration. The first thrust at the major problems of parallel 

processing will be done in those years. 

The final three-year phase will concentrate on advanced 

engineering, building the final major engineering prototypes, and 

further systems integration work. The ultimate goal, scheduled 

for the early 1 9 9 0 s .  is nothing less than an inference 

supercomputer, capable of a million to a billion LIPS, with a 

knowledge base that can handle tens o f  thousands o f  inference 

rules and hundreds of millions of objects - about the right size 

to encompass the Encyclopedia Britannica. The Japanese will rely 

- .  

heavily on bootstrapping: the project’s earlier work on O w i l k  

be used in later hardware design, f o r  example. 

Fifth Generation machines will understand spoken, written, 

and graphical input. The Japanese are launching intensive 

research and development into intelligent interfaces, including 

natural language processing, speech understanding, and graphics 

and image understanding. 

Speech understanding research, f o r  example, will c o v e r  

speech wave analysis, semantic analysis, and pragmatic analysis 

(which derives understanding by extracting themes in a given 

sentence by detecting focus shifts, and so on). Eventually the 

machine will be expected to understand continuous human speech 

with a vocabulary o f  5 0 , 0 0 0  words and 95  percent accuracy from a 

few hundred or more speakers. The speech understanding system is 

also expected to be capable of running a voice activated 

typewriter, and of conducting a dialogue with users by means of 

I 
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synthesized speech in Japanese o r  English. 

Text analysis is also considered part of natural language 

processing by the Japanese, although they are aware that the 

techniques used for large-scale text analysis are different f r o m  

the techniques needed to smooth the w a y  for an individual user to 

t a l k  to a m a c h i n e .  This work also involves a highly ambitious 

m a c h i n e  translation program (initially between English and 

Japanese) w i t h  a vocabulary of 100,000 wo r d s .  T h e  goal is 90 

percent accuracy (the remaining ten percent to be processed by 

humans). Translations will be the product of a n  integrated 

s y s t e m  that takes part in each of the processes f r o m  thew 

compilation o f  the text to printing the translated documents. 

- . _  

P i c t u r e  and image processing are considered almost as 

important a s  language processing, especially as they contribute 

to CAD/CAM an d  the effective analysis of aerial and satellite 

images, m e d i c a l  images, and the like. Eventually the image 

understanding s y s t e m  is expected to store about 100,000 images. 

In this, as in voice recognition, the J a p a n e s e  are building on 

superb R&D that they did themselves in the 1970s during the 

P a t t e r n  Information Processing systems (PIPS) national project. 

T h e  Fifth G e n e r a t i o n  Project has captured the imagination of 

computer scientists around the w o r l d  (almost all m a j o r  computer 

journals carried "special issues" o n  the F i f t h  Generation 

Project), a n d  e v e n  began to attract popular attention (major 

articles h a v e  recently appeared in NEWSWEEK, TIME, BUSINESSWEEK, 

FORTUNE). 
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At the heart of the F i f t h  Generation Project are KBSs. This 

thesis addressed m a j o r  issues, concepts, and techniques related 

to KBSs. As w a s  discussed in Chapter 7, numerous problems exist 

in building, m a i n t a i n i n g ,  and modifying large-scale KBSs. In 

addition to these, the Fifth Generation Project faces m a j o r  

challenges in parallel architectures, distributed functions, VLSI 

design and fabrication. 

- .  
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ABSTRACI' 

After being in a relatively dormant state for many years, 

only recently is artificial intelligence (AI) - that branch of 

computer science that attempts to have machines emulate 

intelligent behavior - accomplishing practical results. Most of 

these results can be attributed to the design and use of 

Knowledge-Based Systems, KBSs (or expert systems) - problem 

solving computer programs that can reach a level of  performance 

comparable to that of a human expert in some specialized problem 

domain [Nau, 8 3 1 .  These systems can act as a consultant f o r -  

various requirements like medical diagnosis, military threat 

analysis, project risk assessment, etc. These systems possess 

knowledge to enable them to make intelligent decisions. They 

are, however, not meant to replace the human specialists in any 

particular domain. 

e.. 

In this thesis, a critical survey of recent work in 

interactive KBSs i s  reported, explaining KBS concepts and issues 

and techniques used to construct KBS. Application considerations 

to construct KBSs and potential future research areas in KBSs are 

identified. . 

A case study (MYCIN) of  a KBS, a list o f  existing KBSs, and 

an introduction to the Japanese Fifth Generation Computer Project 

are provided as appendicies. Finally, an extensive set of 

KBS-related references are provided at the end of this report. 
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